CONCEPTUAL PROBLEMS OF MODERN IRREVERSIBLE THERMODYNAMICS

IVAN VAVRUCH

Route du Centre 6, CH-1723 Marly (FR), Switzerland

Received 22.VI.2001

Contents

- 1. Introduction
- 2. Classical irreversible thermodynamics
- 3. Extended irreversible thermodynamics
- 4. Rational thermodynamics
- 5. Concluding remarks

1. Introduction^{1–3,11,14}

Macroscopic thermodynamics of equilibrium referred to as classical thermodynamics is concerned with macroscopic states of matter, with experimentally observable properties and with energetics of systems exchanging heat, work and/or matter with the surroundings. It rests on two fundamental laws: the balance of energy and the so-called second principle. The latter introduces two new concepts, absolute temperature and entropy, and states that entropy never decreases in an isolated system. Classical thermodynamics does not enquire into the mechanism of the phenomena and thus is unconcerned with molecular structure of the systems under investigation. It is a theoretically well founded theory and in the practice a very successful method.

Classical thermodynamics is restricted to equilibrium situations. It is correct for equilibrium systems, for reversible (equilibrium) processes and for processes between equilibrium states. Absolute temperature and entropy are defined rigorously and unambiguously only in equilibrium. Outside equilibrium, entropy enters the theory through an inequality only and it is not uniquely defined. The relationships in classical thermodynamics between state variables (e.g. the Gibbs equation) lose their validity in nonequilibrium. The range of application of classical thermodynamics is therefore very narrow. It is in particular unable to describe situations far from equilibrium and the behaviour of continuous systems or of complicated materials (materials with memory, nonuniform systems, etc.). Their treatment falls under the head of thermodynamics of irreversible processes which originally tried to overcome these difficulties in two ways: either the existence of absolute temperature and of entropy outside equilibrium was simply assumed or different hypotheses, for example the local equilibrium, were used.

Unlike classical thermodynamics, which is one universal theory, thermodynamics of irreversible processes presents several faces. We shall review besides classical irreversible thermodynamics only the most important macroscopic theories, the extended irreversible thermodynamics and the rational thermodynamics. Some other theories, such as the so-called entropy-free thermodynamics or the theory of hidden variables, will not be discussed as they are of a rather special nature.

In addition to the phenomenological macroscopic theories there exist also microscopic theories of irreversible thermodynamics. They facilitate a deeper insight and their importance will in our opinion still grow in the future. We mention the methods based on the kinetic theory of gases and on the fluctuation theories, and in particular the more general methods and theories rooted in nonequilibrium statistical mechanics. For example, the linear response theory based on the fluctuation-dissipation theorem which relates the phenomenological parameters to the nature of microscopic dynamics and fluctuations. These theories lie beyond the scope of this treatise, however, and they will not be analyzed here.

2. Classical irreversible thermodynamics^{4–8,10}

Classical irreversible thermodynamics (CIT) as developed by Onsager, Prigogine (Nobel prize for chemistry in 1968 and 1977) and many others, forms the base for all the later formulations of irreversible thermodynamics. It has to be emphasized that it is based on the concept of local equilibrium. This fundamental hypothesis assumes that the system can be split mentally into cells which are sufficiently large to be treated as macroscopic thermodynamic subsystems but, at the same time, sufficiently small that equilibrium is very close to being realized in each cell. The hypothesis thus postulates that the local and instantaneous relations between the thermal and mechanical properties of a physical system are the same as for a uniform system at equilibrium. This implies that all the variables of equilibrium thermodynamics remain significant and that all the relationships of classical thermodynamics between state variables remain valid outside equilibrium provided that they are stated locally at each instant of time. That means particularly that entropy outside equilibrium depends on the same variables as at equilibrium and that the Gibbs equation is here correct.

The central concept of CIT is the rate at which entropy is produced during an irreversible process. It has been since the origin of irreversible thermodynamics related experimentally to the well-known empirical laws like Fourier's, Fick's or Ohm's. The rate of local entropy production σ follows from the general balance equation of entropy

$$\frac{\partial(\rho s)}{\partial t} = -\nabla .(\mathbf{J}_{s} + \rho s \mathbf{v}) + \sigma \tag{1}$$

with

$$\sigma \ge 0 \tag{2}$$

Here ρ is the mass density, *s* is the local specific entropy, \mathbf{J}_s is the local entropy flux and **v** is the velocity field. ∇ means

the nabla operator and it is worth noticing that the flux J_s contains two terms: the first is connected with heat conduction and the second arises from the diffusion. Relation (2) is in agreement with the second law of thermodynamics. The basic distinction is here between reversible and irreversible processes, since only the irreversible ones contribute to entropy production.

Our objective is now to explicitly calculate the local rate of entropy production in terms of the "force" that drives an irreversible process and of the response to this force, the "flux". Since the local-equilibrium hypothesis allows us to write Gibbs equation locally for any time, the suitable starting point is this equation in terms of time derivatives,

$$T\dot{s} = \dot{u} + p\dot{v} - \sum_{k} \mu_k \dot{c}_k \tag{3}$$

Here the lowercast letters *s*, *u*, and *v* indicate extensive quantities per unit mass, μ_k is the chemical potential of the constituent *k* and c_k the mass fraction of *k*. Replace \dot{u}, \dot{v} , and \dot{c}_k by the appropriate balance equations, and after rearrangements one obtains for σ an expression which contains six different effects: the first is related to heat conduction, the second to matter flow (diffusion), the third and fourth to mechanical dissipation (viscosity), the fifth to chemical reaction and the sixth to electrical currents.

We shall not write out this complicated equation (see Chapter 3), but emphasize rather the following important result: all the terms it contains have the character of a sum of the products of thermodynamic fluxes J_k (for example heat flux, diffusion, chemical reaction) and of conjugated generalized forces X_k (gradients of temperature, gradients of chemical potential, affinities). Thus the basic formula for the rate of entropy production of the irreversible process can be written in the simple form,

$$\sigma = \sum_{k} J_k X_k \tag{4}$$

That means, the rate of production of entropy is the sum of products of each flux with the associated force. Evidently, all J_k and X_k vanish at equilibrium.

The existence of a non-negative entropy production is one of the main points underlying CIT. The further is the existence of linear constitutive laws. They postulate that the fluxes J_i and the generalized forces X_i are related linearly:

$$J_i = \sum_j L_{ij} X_j \tag{5}$$

Equations (5) are called phenomenological equations and the coefficients L_{ij} phenomenological (kinetic) coefficients. This scheme automatically includes the empirical laws mentioned above. Experimental evidence and theoretical considerations in statistical mechanics have confirmed that a wide class of processes can be described by means of linear relations between fluxes and forces. This is true in particular for transport processes. The phenomenological coefficients are subject to the rule of selectivity limiting the possibility of interference between irreversible processes of different tensorial character and they are dominated by the Onsager reciprocal relations which state that

$$L_{ij} = L_{ji} \tag{6}$$

It is, when the flow J_i corresponding to the irreversible process *i* is influenced by the force X_j of the irreversible process *j*, then the flow J_j is also influenced by the force X_i through the same coefficient.

The Onsager relations belong to the most significant results of CIT. They were originally based only on experiments, but they are motivated today usually on a molecular base and were shown to be a consequence of the time-reversal invariance of the microscopic dynamics. The validity of these relations has been challenged on the microscopic level, but they are generally accepted to be correct at the macroscopic level. Experimental tests showed that they are a particularly powerful tool for linear processes and for studying coupled phenomena, like thermodiffusion, thermoelectric and thermomagnetic effects.

CIT is the most successful method of irreversible thermodynamics and it turned out to be very useful in many practical situations. Its current tasks are the linear transport phenomena, the coupled phenomena, the mixtures and chemical kinetics. It must be conceded however that the theories underlying it are not general and are of an approximative character. They are correct only near equilibrium and the hypothesis of local equilibrium is only consistent with local and instantaneous relations between fluxes and forces. There are also several limitations on the microscopic level, but they will not be discussed here. Efforts have been made to enlarge the range of applications of CIT and they led to the formulations of the following new theories.

3. Extended irreversible thermodynamics^{9,10}

Extended irreversible thermodynamics (EIT) is the last variant of irreversible thermodynamics. Its principal objective is to go beyond the local equilibrium hypothesis by generalizing the classical theory. EIT is not a universal theory, but assumes many faces. The generalized macroscopic formulation which represents the core of the whole theory, is corroborated from a microscopic point of view by the kinetic theory, nonequilibrium information theory and other formulations of nonequilibrium statistical mechanics. In addition, an axiomatic version of EIT has been proposed which is formulated along the line of thought of rational thermodynamics (see Chap. 4) and borrows some methods and concepts of it. In this article we shall sketch out only the generalized macroscopic version and we shall follow mostly the method of Lebon.

Macroscopic EIT enlarges the CIT and this is achieved in two ways:

1. The theory introduces besides the classical thermodynamic variables, such as density, concentration, temperature, as new independent variables some nonequilibrium quantities taking the form of the heat flux, the viscous pressure

tensor, the flux of matter, the flux of electric current, etc. These "complementary" variables are then treated on the same level as the usual classical variables.

2. To compensate for the lack of evolution equations, supplementary rate equations for the dissipative fluxes are introduced, in addition to the usual balance equations of mass, momentum and energy. These rate equations are compatible with the second law of thermodynamics. Whereas the evolution equations for the classical variables are given by the usual balance laws, no general criteria exist concerning the evolution equations of the dissipative fluxes. A natural way to obtain them from a macroscopic base is then to generalize CIT.

We outline now the formalism. The central role plays here the entropy. We assume that the system depends locally not only on the classical variables, but also on the dissipative fluxes which we regard as independent variables. It is worth noting that these fluxes, and also generalized forces, in equations of EIT are not necessarily scalar quantities but they represent vectorial and tensorial quantities as well. For simplicity, we restrict ourselves in the next discussion to a pure Stokesian fluid, where only heat flux **q** and bulk viscous pressure p^{ν} are taken as supplementary independent variables, and for this special case we have for the generalized entropy the relation

$$s = s(u, v, \mathbf{q}, p^{v}) \tag{7}$$

Here u and v have their usual meaning and the specific entropy s is an additive and positive quantity. From the differential form of eq. (7) we arrive to the generalized Gibbs equation (in Lebon's notation)

$$ds = T^{-1}du + T^{-1}pdv - T^{-1}v(\alpha_{10}\mathbf{q} . d\mathbf{q} + \alpha_{00}p^{\nu}dp^{\nu})$$
(8)

which is the central thermodynamic result of EIT for the case of a Stokesian fluid. We note that eq. (8) is useless unless we have identified the parameter α in physical terms. This is done with help of the evolution equations of the fluxes.

The theory of EIT yields farther an expression for the generalized entropy flux and in particular for the entropy production which has the structure of a bilinear form similar to eq. (4) in CIT, but contains additional terms depending on the time and space derivatives of the fluxes. The nonequilibrium absolute temperature and the nonequilibrium thermo-dynamic pressure are introduced and in terms of them the nonequilibrium equations of state are derived. Of special interest are the supplementary rate equations for the dissipative fluxes which compensate for the lack of evolution equations. They are original but contain unfortunately besides the α coefficients several new coefficients which must be identified on physical grounds.

EIT provides a link between thermodynamics and dynamics of fluxes, and it is especially useful in describing systems with relatively long relaxation times, e.g. solids at low temperatures, superfluids, some viscoelastic fluids, etc. The statements behind it are confirmed by the kinetic theory of gases and by statistical mechanics.

It may be asked what are the reasons for choosing the fluxes rather than the gradients of the classical variables as new independent quantities. This question has been answered by Lebon as follows. The fluxes are associated with well defined microscopic operators and they are advantageous for slow and steady state phenomena. By expressing entropy in terms of the fluxes the classical theory of fluctuations can be easily generalized.

The formalism of EIT has been the subject of some criticisms. In particular:

- Every dissipative flux is considered as a quantity characterized by a single evolution equation. However, this is in practice not always the case.
- There exist still other "additional" variables and variety of evolution equations for the fluxes as well.
- Entropy is regarded as an analytical function of the fluxes, but this is not an essential assumption and non-analytical developments have been proposed.
- EIT is no longer compatible with the concept of local equilibrium (for example the memory for temperature), the status of entropy and the validity of the Gibbs equation in nonequilibrium are therefore controversial (see Chapter 4).

4. Rational thermodynamics^{9–14}

This theory is not a current thermodynamic theory but nonlinear thermomechanics of continuous media and it is drastically different from CIT. However, since it is very general, it takes the classical method for its linear approximation. It is a phenomenological and macroscopic theory which ignores the molecular structure and it is also a mathematical theory. Its structure is clear and logical, and the formulation of the results is exact and free from ambiguities.

The concept of local equilibrium is abandoned and for the characterization of a system the new concept of memory is introduced. The behaviour of the system is thus determined not only by the present value of the variables but also by the whole history of their past value. Main objective of rational thermodynamics is to provide a method for deriving constitutive equations which serve for a most faithful description of actual physical processes. It operates with a certain number of axiomes and this point has been often criticized in the sense that "it uses a set of a priori postulates and constitutive functionals for defining a thermodynamic body" (S. Lengyel, 1984). Finally, rational thermodynamics is not one universal theory but rather a working programme.

The method of rational thermodynamics resembles to that of mechanics:

- 1. Selection of quantities describing the system (primitive concepts and concepts defined in terms of them).
- 2. General laws or balances valid for all the sphere under investigation (e.g. the first and the second law, balance laws of mass, momentum and energy).
- 3. Construction of constitutive equations (it is a sort of generalized equations of state formulated in an abstract form).
- 4. Application of constitutive postulates, which are used for a general formulation of constitutive relations.

The searched solution of the task under consideration consists in the insertion of constitutive equations in general laws or balances ad 2. It leads to differential equations which must be solved hereupon.

The constitutive postulates are for rational thermodyna-

mics characteristic, they serve mainly to restrictions of constitutive equations and help to find their ultimate forms. In particular, the constitutive equations must meet these postulates which are usually called "principles", but some of them are only useful rules. Of special interest for thermodynamics is the principle of admissibility, called also the entropy principle, which opened a way to construct rational thermodynamics. We mention further the principle of equipresence (concerns the presence of variables in constitutives), the principle of objectivity (frame independence), the principle of local action (influence of neighbourhood), the principle of memory (heredity) and the principle of symmetry. The above axioms are general enough to be applied to all constitutive equations.

We now outline the method of rational thermodynamics on the example of the celebrated theory of Šilhavý which will be presented in simplified terms.

The theory first introduces a new concept called the heat distribution which informs us how much heat was exchanged at each empirical temperature and it is of importance in the framework of the second law. Second, four postulates concerning the properties of the thermodynamic system under investigation are claimed and two more for the universe. The postulates for the system which is in the theory considered as a closed one, concern the work, the heat distribution and the processes taking place in the system, and the postulates for the universe formulate its closeness and completeness, respectively.

The core of the formalism are the very original and clever definitions of the first and the second laws of thermodynamics. Since they are formulated exclusively in terms of the primitive notions of heat, work, empirical temperature and in terms of cyclic processes, their experimental verification is at least in principle possible.

The first law is postulated as assertions about the nonexistence of perpetual motion of the first kind: In any cyclic process the system can perform work w if and only if it absorbs heat q:

$$w < 0 \Leftrightarrow q > 0 \tag{9}$$

The second law is formulated as the postulate of the impossibility of the perpetual motion of the second kind: In a cyclic real or ideal process the system can absorb heat only if it emits some heat, i.e.,

$$q^+ > 0 \Longrightarrow q^- > 0 \tag{10}$$

where q^+ is the heat absorbed and q^- the heat emitted during the process.

From the postulate (9) and those about the thermodynamic system and the universe follow these logical consequences: The existence of the mechanical equivalent of heat, J, of a state function called the internal energy, U, and of the balance of energy

$$\Delta U = Jq + w \tag{11}$$

One takes usually J = 1 and U is determined within an additive constant (it is unique). The balance (11) is not bound to any concrete model and is therefore applicable to an arbitrary system (material).

From the formulation of the second law (10) and the postulates about the system and the universe follow the following consequences: The existence of the absolute temperature, T, of the Clausius inequality for any cyclic process and the state function entropy, S, for each process of the universe such that for every process the entropic inequality

$$\Delta S \ge \int \frac{\mathrm{d}Q}{T} \tag{12}$$

is valid. Here dQ is the heat exchanged during the processes at the absolute temperature *T*. Unlike *U*, entropy is not unique in the sense that more entropies satisfying (*12*) and differing by a function of state may be constructed. On the other hand, it is indeed constant within an additive constant in the special case in which the initial and the final states of *S* are known and fixed, e.g. in reversible processes. Relation (*12*) is not restricted to any concrete model and is thus applicable to an arbitrary system.

The proof of these results is made geometrically, but it is tedious and will not be shown here.

It can be concluded that the results of the Šilhavý's method show the practicability of basic thermodynamic laws and of the quantities they contain (absolute temperature, entropy, entropic inequality) also in general thermodynamic systems and processes. It means also in nonequilibrium situations, and they enlarge the classical results very much. These excellent results mean a fundamental contribution to the whole modem thermodynamics.

The theory of Šilhavý is applicable in the whole classical thermodynamics and in the majority of irreversible thermodynamics, mainly in irreversible transport phenomena, in the mixtures and in chemical kinetics. Its principal deficiency is that its range of application is limited to closed systems and to cases with a single empirical temperature. Thus, it is for example not applicable to diffusing mixtures or to plasma.

Note:

It is of interest that the postulate of linearity of CIT follows from the general theory of rational thermodynamics. On the other hand, the Onsager reciprocal relations follow only after some additional assumptions about the constitutive equations.

5. Concluding remarks

Classical (linear) irreversible thermodynamics is based on the fundamental hypothesis of local equilibrium. The validity of the results of equilibrium thermodynamics is thus anticipated at the outset. The classical method turned out to be very useful in many practical situations, but the theories underlying it are not general and they are of an approximative character. The method is inadequate to treat situations far from equilibrium or systems with complicated inner structures (e.g. bodies with memory).

Extended irreversible thermodynamics is no longer based on the local-equilibrium hypothesis but it generalizes and enlarges the classical theory. It introduces besides the classical thermodynamic variables the dissipative fluxes as new independent variables. To compensate for the lack of evolution equations, supplementary rate equations for the dissipative fluxes are introduced. The central thermodynamic result is the generalized Gibbs equation. The statements behind this theory are confirmed by the kinetic theory of gases and by statistical mechanics.

Rational thermodynamics presents a very rigorous mathematical formalism and it abandons the hypothesis of local equilibrium. It is a phenomenological and macroscopic theory which ignores the molecular structure and assumes that materials have a memory. Its main objective is to derive constitutive equations which must meet a certain number of a priori postulates.

The theory of Šilhavý demonstrates the practicability of the methods of equilibrium thermodynamics in nonequilibrium for closed systems with a single empirical temperature. This method enlarges the results of classical thermodynamics essentially in these points: it proves the existence of absolute temperature and of entropy also in nonequilibrium and derives the energy balance and the entropy inequality for an arbitrary system. Entropy is unique within an additive constant because the Gibbs equation (i.e. local equilibrium) is valid.

The present note is devoted to the phenomenological and macroscopic aspects and the promising microscopic approaches lie therefore outside the scope of this paper.

REFERENCES

- 1. Pippard A. B.: *Elements of Classical Thermodynamics*. Cambridge University Press, Cambridge 1966.
- Callen H. B.: *Thermodynamics and an Introduction to Thermostatics*, 2nd ed. Wiley, New York 1985.

- 3. Chandler D.: Introduction to Modern Statistical Mechanics. Oxford University Press, Oxford 1987.
- 4. de Groot S. R., Mazur P.: *Nonequilibrium Thermodynamics*. North-Holland, Amsterdam 1962.
- Prigogine I.: Introduction to Thermodynamics of Irreversible Processes, 3rd ed. Wiley-Interscience, New York 1968.
- Glansdorff P., Prigogine I.: *Thermodynamics of Structure, Stability and Fluctuations*. Wiley-Interscience, New York 1971.
- 7. Hutter K.: Acta Mechanica 27, 1 (1977).
- 8. Prigogine I.: Science 201, 777 (1978).
- Casas-Vázquez J., Jou D., Lebon G., eds.: Recent Development in Nonequilibrium Thermodynamics (Lecture Notes in Physics 199). Springer, Berlin 1984.
- 10. Jou D., Casas-Vázquez J., Lebon G.: *Extended Irre*versible Thermodynamics. Springer, Berlin 1993.
- 11. Kratochvíl J., Šilhavý M.: Cs. Cas. Fyz. A 31, 97 (1981).
- Kratochvíl J., Šilhavý M.: J. Non-Equilib. Thermodyn. 7, 339 (1982).
- 13. Samohýl I.: Thermodynamics of Irreversible Processes in Fluid Mixtures. Teubner, Leipzig 1987.
- Samohýl I.: Nevratná termodynamika. Vydavatelství VŠCHT, Praha 1998.

I. Vavruch (CH-1723 Marly, Switzerland): Conceptual Problems of Modern Irreversible Thermodynamics

This article deals with the general ideas of irreversible thermodynamics. First the classic theory is discussed, next extended irreversible thermodynamics and rational thermodynamics are treated. To limit the enormous extent of the subject, only macroscopic aspects are examined.

DERIVÁTY PURINOVÝCH BÁZÍ JAKO INDIKÁTORY POŠKOZENÍ DNA

IGOR LINHART a JAN NOVÁK

Ústav organické chemie, Vysoká škola chemicko-technologická v Praze, Technická 5, 166 28 Praha 6 e-mail: Igor.Linhart@vscht.cz

Došlo dne 5.I.2002

Klíčová slova: adukty DNA, mutagenita, karcinogenita, biologické monitorování, syntéza aduktů DNA

Obsah

- 1. Úvod
- Interakce cizorodých látek s DNA vznik aduktů
 Typy aduktů, místa ataku v molekule DNA
 Strukturní typy látek tvořících adukty
- Důsledky poškození DNA pro buňku a pro celý organismus
- Biologické monitorování

 - 4.1. Metoda "postlabeling"
 - 4.2. Metody hmotnostní spektrometrie
 - 4.3. Imunochemické metody
- 5. Příprava autentických aduktů DNA
- 6. Závěr

1. Úvod

Některé reaktivní chemické látky se mohou kovalentně vázat na purinové a pyrimidinové báze v molekule DNA, tvořit tzv. adukty. Slovo *adukt* zde není ovšem míněno, jak je v chemii běžné, totiž jako produkt adice, ale v širším smyslu,

jako molekula DNA nebo její část (oligonukleotid, nukleotid, nukleosid nebo báze), ke které bylo něco kovalentně navázáno, připojeno. Zpravidla tyto adukty nevznikají adicí, ale nukleofilní nebo radikálovou substitucí. Vznik pozměněné nukleové báze může mít za následek zánik vazebného místa pro vytvoření vodíkové vazby a může vést k bodové mutaci, tedy k chybnému párování bází při přepisu genetické informace. Mutace mohou mít závažné důsledky pro život buňky i celého organismu; nejvýznamnější z nich je tvorba zhoubných nádorů¹. Karcinogenní potenciál strukturně rozdílných aduktů se přitom významně liší. Z toho vyplývá, že nejen množství, ale také typ aduktů DNA je významným indikátorem poškození DNA. Stanovení aduktů DNA může sloužit jako vnitřní ukazatel, biologický indikátor expozice genotoxickým látkám a také jako prostředek pro diagnostiku poškození DNA, zejména pro včasné odhalení rizika rakoviny.

Interakce cizorodých látek s DNA – vznik aduktů

2.1. Typy aduktů, místa ataku v molekule DNA

Cizorodé látky mohou tvořit adukty s DNA přímo nebo po metabolické aktivaci na reaktivní metabolické meziprodukty. Kromě cizorodých látek mohou s DNA reagovat i reaktivní meziprodukty fyziologického metabolismu, zejména volné radikály endogenního původu. Hlavní místa ataku elektrofilních látek jsou polohy 7, O⁶ a N² v guaninu, 1, 3, N⁶ a 7 v adeninu, 3 v thyminu a 3 a N⁴ v cytosinu (obr. 1). Bylo prokázáno, že adukty N⁶ na adeninu jsou tvořeny z méně stabilních 1-derivátů, které podléhají Dimrothovu přesmyku za otevření a opětovného uzavření pyrimidinového kruhu^{2–5} (obr. 2). Dimrothův přesmyk byl prokázán pomocí adeninových derivátů značených isotopem ¹⁵N (cit.^{4,5}).

Obr. 1. Místa ataku elektrofilem v nukleobázích; dR-2'-deoxyribosyl

Obr. 2. Dimrothův přesmyk 1-alkyldeoxyadenosinů

V případě adeninových 1-aduktů oxiranových derivátů dochází kromě Dimrothova přesmyku také k deaminaci na příslušné deriváty inosinu^{2,6–8}. Příklad takové deaminační reakce⁸ je uveden na obr. 3. Mechanismus byl prokázán pomocí vody H₂¹⁸O. Také guaninové adukty podléhají dalším transformacím za fyziologických podmínek. Zavedení substituentu do polohy 7 glykosidicky vázaného guaninu má za následek snadné hydrolytické otevření imidazoliniového kruhu, příp. štěpení glykosidické vazby, depurinaci⁹⁻¹². K depurinaci může dojít dokonce již za fyziologických podmínek¹². K depurinačním reakcím dochází také u 3-alkyladeninových aduktů, které jsou ještě méně stabilní než 7-alkylguaninové^{11,12}. Průběh těchto depurinačních reakcí je znázorněn na obrázku 4 a 5. Zatímco v neutrálním a kyselém prostředí dochází převážně ke štěpení glykosidické vazby, v alkalickém prostředí převládá konkurenční štěpení kruhu. V případě 7-alkylguanosinů se jedná o otevření imidazolového kruhu, v případě 3-alkyladeninových nukleosidů se otvírá pyrimidinový kruh¹¹. Nestabilita 7-alkylguaninových a 3-alkyladeninových aduktů komplikuje jejich stanovení obvyklými metodami. Na druhé straně depurinace otevírá možnosti pro detekci aduktů DNA v moči a jejich využití jako indikátorů expozice DNA alkylujícím látkám.

2.2. Strukturní typy látek tvořících adukty

Schopnost tvořit adukty s DNA je dána chemickou reaktivitou látky nebo jejího metabolitu. Jde zejména o elektrofilní a radikálovou reaktivitu. Aby se však reaktivní částice mohla navázat na DNA, musí se dostat do cílového orgánu a přes buněčnou membránu proniknout až k jádru. Rozhodně tedy neplatí přímý vztah mezi reaktivitou látky (molekuly, iontu, radikálu) a množstvím aduktů DNA *in vivo*. Určovat genotoxicitu a zejména genotoxickou karcinogenitu chemických látek z jejich struktury je pro chemika mimořádně lákavé. V pří-

Obr. 3. Průběh deaminace 1-adeninových aduktů s oxirany; R = 2´-deoxyribosyl nebo ribosyl

Obr. 4. Průběh depurinace a otevření imidazolového kruhu 7-alkylguanosinů a 7-alkyldeoxyguanosinů

Obr. 5. Průběh depurinace a otevření pyrimidinového kruhu 3-alkyladenosinů a 3-alkyldeoxyadenosinů

R

Y

Tabulka I

Referáty

Typ látky	Typ metabolitu	Příklad látky	Příklad metabolitu	
Polycyklické aromatické	dihydrodiol-epoxid	benzo[a]pyren	trans-7.8-dihvdrobenzo-	
uhlovodíky s "bay region")	·······	[<i>a</i>]pyren-7,8-diol-9,10-oxid	
Dialkyl-sulfáty		dimethyl-sulfát		
Látky s elektronově	deriváty oxiranu	akrylonitril	oxirankarbonitril	
deficitní olefinickou vazbou	·			
N-nitrosoaminy	diazoniový ion, karbokation	dimethyl-N-nitrosoamin	methyldiazonium, methylový karbokation	
α-Chloralkylethery		bis(chlormethylether)		
N- nebo S-β-chloralkyl-deriváty		bis(2-chlorethyl)-sulfid		
Aflatoxiny	deriváty oxiranu	aflatoxin B1	2,3-epoxyaflatoxin B1	
Arylaminy	nitreniové ionty	2-naftylamin	2-naftylnitreniový ion	

padě některých skupin látek, např. polycyklických aromatických uhlovodíků, existují již dlouhou dobu teoretické modely, které umožňují úspěšně odhadovat karcinogenní účinky pomocí velmi jednoduchých kvantově-chemických výpočtů přímo z chemické struktury¹³. Podkladem pro tyto modely je ovšem experimentálně ověřená znalost biotransformace a mechanismu interakce aktivního metabolitu s DNA. Obecně jsou však jak celý proces kancerogenese, tak i jeho část, tvorba aduktů DNA, natolik složité, že předvídat jejich výsledek na základě pouhé chemické struktury, případně chemické reaktivity, není možné. Na základě dlouhodobě nashromážděných experimentálních dat lze však vytipovat určité strukturní skupiny látek, které jsou podezřelé z tvorby aduktů DNA, a v důsledku toho z mutagenního a karcinogenního účinku. Tyto typy látek a jejich účinné metabolity jsou uvedeny bez nároku na úplnost v tabulce I. Schopnost tvořit adukty se může i u strukturně velmi podobných látek významně lišit. V některých případech je to dáno pouhou reaktivitou v alkylačních reakcích. Například dimethylsulfát je podstatně reaktivnější a biologicky účinnější než diethylsulfát. V jiných případech to souvisí s tvorbou toxických metabolitů, které jsou špatnými substráty pro příslušné detoxikující enzymy, a jsou tedy za fyziologických podmínek relativně stálé. To je případ trans--7,8-dihydrobenzo[a]pyren-7,8-diol-9,10-oxidu, který se špatně hydrolyzuje epoxid-hydrolasami, a je proto účinnější než ostatní dihydrodiol-epoxidy a arenoxidy odvozené od benzo[*a*]pyrenu.

3. Důsledky poškození DNA pro buňku a pro celý organismus

Expozice organismu genotoxickým látkám může nastartovat kaskádu dějů se závažnými důsledky pro buňku i celý organismus. Tento proces začíná strukturní změnou DNA (tvorbou aduktu). Pokud tato změna není pro buňku bezprostředně smrtící, může dojít k replikaci a transkripci DNA za vzniku mutovaného genového produktu¹. Vzniklé mutované buňky mají pozměněnou funkci, což může přerůst v nemoc celého organismu, zejména v nádorové onemocnění. Proti tomuto procesu působí opravné mechanismy, které umožňují poškozenou DNA odstranit bez dalších nepříznivých účinků pro buňku¹⁴. Změny v genetickém materiálu buněk lze sledovat cytogenetickou analýzou (chromosomové aberace, výměny sesterských chromatidů, mikrojádra). Tyto metody jsou však pracné a nejsou specifické vzhledem k látce, která je vyvolala, ani vzhledem k účinku na organismus. Rozvoj analytických metod v poslední době umožnil s dostatečnou citlivostí monitorovat určité typy změn, které ukazují na poškození DNA charakteristické pro danou látku. Tak dochází k rozvoji metod biologického monitorování založených na stanovení aduktů DNA.

4. Biologické monitorování

Biologickým monitorováním se v toxikologii rozumí sledování strukturních nebo funkčních změn v živém organismu v důsledku působení cizorodé látky. Tyto změny jsou sledovány pomocí biologických indikátorů (markerů). Biologické indikátory můžeme rozdělit na dva základní typy: indikátory dávky a indikátory účinku. Typickým příkladem indikátoru dávky je netoxický metabolit cizorodé látky, například kyselina mandlová pro styren. Její množství vyloučené v moči přímo nesouvisí s účinkem styrenu, ale za předpokladu předem zjištěného vztahu mezi dávkou styrenu a vylučováním kyseliny mandlové můžeme z něj kvantitativně určit či aspoň odhadnout dávku styrenu. Příkladem indikátoru účinku je hladina jaterních enzymů v periferní krvi, která indikuje poškození jater (odumírání hepatocytů). Nelze z ní však určit, jaká látka poškození jater způsobila. Adukty DNA splňují nároky kladené jak na indikátory dávky, tak na indikátory účinku. Hladina aduktů (podíl aduktu určitého typu a nezměněných bází v DNA) je úměrná dávce cizorodé látky kumulované po střední dobu života buněk, ze kterých byla DNA izolována.

Strukturně odlišné adukty DNA mají také různou schopnost vyvolat zhoubné nádorové bujení. Vyhodnocením studií karcinogenity 27 chemických látek, které byly testovány na schopnost vyvolat tvorbu jaterních tumorů u potkanů nebo u myší, bylo zjištěno, že tyto karcinogenní látky se vzájemně liší schopností tvořit adukty. Přitom množství nalezených aduktů odpovídající tumorigenní dávce TD₅₀ pro potkany spadalo pro všechny zkoumané látky do rozmezí od 53 do 2083 aduktů na 10^8 nukleotidů a pro myši od 812 do 5543 aduktů na 10^8 nukleotidů¹⁵. Tumorigenní dávka TD₅₀ je definována jako dávka, při které se pravděpodobnost, že pokusné zvíře zůstane během 2 let bez nádoru, snižuje na polovinu. Toto rozmezí je překvapivě úzké, uvážíme-li, že množství aduktů naměřená v rámci vyhodnocených studií v játrech potkanů bylo v rozmezí 2.10^{-3} až 2.10^5 aduktů na 10^8 nukleotidů. Hodnoty TD₅₀ testovaných látek se přitom pohybovaly v rozmezí $1,3.10^{-3}$ až 75,8 mg kg⁻¹ den⁻¹. Frekvence výskytu aduktů v cílovém orgánu se tedy jeví jako dobrý indikátor rizika nádorových onemocnění. Vzhledem k malému souboru takto testovaných látek nelze vyloučit, že tento závěr platí pouze pro určité typy karcinogenů. Rozhodně nelze předpokládat, že bude platit pro nemutagenní karcinogeny.

Hladina aduktů DNA se u lidí měří nejčastěji v leukocytech nebo v moči. Při stanovení aduktů v leukocytech je nutno nejdříve izolovat DNA, rozštěpit ji na nukleotidy či nukleosidy a poté stanovit vhodnou analytickou metodou obsah strukturně modifikovaných bází. Nalezené hodnoty odrážejí kumulovanou expozici během střední doby života leukocytů. Vylučování modifikovaných nukleobází v moči bylo známo již koncem 19. století. Byla vyvinuta řada analytických postupů k jejich stanovení. Tyto postupy jsou založeny na hmotnostní spektrometrii a imunochemických metodách. V moči se nalézají převážně deriváty purinových bází, které vznikají depurinací labilních aduktů DNA, zejména 7-alkylguaniny a 3-alkyladeniny. Adukty nalezené v moči na rozdíl od aduktů v leukocytech odrážejí pouze krátkodobou expozici mutagenům. Jejich větší část pochází obvykle z alkylace t--RNA, a ne z DNA. Výjimkou je 3-methyladenin, který nebyl nalezen jako modifikovaná báze v t-RNA. Lze tedy předpokládat, že zatímco 7-alkylguaniny v moči pochází z alkylace t-RNA a DNA, 3-alkyladeniny jsou pravděpodobně tvořeny převážně nebo pouze z aduktů DNA (cit.11).

Ke stanovování aduktů DNA v různých biologických materiálech byla vyvinuta řada citlivých analytických metod. Můžeme je rozdělit na metody specifické a nespecifické. Nejjednodušší metodou ke stanovení frekvence aduktů odvozených od dané látky je použití substrátu značeného radioisotopy (nejčastěji ³H a ¹⁴C) s měřením radioaktivity izolované DNA. Tato metoda je ovšem strukturně nespecifická. Mezi specifické metody patří analýza nukleotidů pomocí HPLC, luminiscenční metody, hmotnostní spektrometrie a imunochemické metody. Zvláštní místo zaujímá metoda "postlabeling", která má omezenou strukturní specifitu, ale vysokou citlivost.

4.1. Metoda "postlabeling"

Tato metoda vyvinutá Randerathem a spol.¹⁶ umožňuje detekci a kvantitativní stanovení aduktů DNA s vysokou citlivostí. DNA je izolována z buněk, zbavena proteinů a RNA a je poté enzymaticky štěpena na jednotlivé nukleotidy (3´-monofosfáty) a nukleotidové adukty. Po obohacení směsi na nukleotidové adukty extrakcí nebo enzymaticky (nukleasa P₁) jsou nukleotidy i adukty označeny ³²P-fosfátem. Jako donor slouží ATP s terminálním ³²P-fosfátem a fosforylace je katalyzována T4 polynukleotid kinasou. Výsledná směs značených nukleosid-3´,5´-difosfátů je pak dělena vícedimenzionální TLC. Tím dojde k rozdělení fosforylovaných aduktů a přirozených nukleotidů. Adukty jsou následně detegovány autoradiografií. Tato tradiční metoda patří dosud mezi nejcitlivější (1 adukt na 10⁹ až 10¹⁰ nukleotidů); její nevýhodou je nízká specifita. Adukty je možné identifikovat pomocí autentických standardů, avšak vzhledem k omezené rozlišovací schopnosti TLC není identifikace spolehlivá a u složitých směsí aduktů, které tvoří na tenké vrstvě často široké diagonální zóny, je nemožná. Proto byla separace ³²P-značených aduktů pomocí TLC nahrazena účinnější metodou HPLC (cit.^{17,18}). Fosforylace katalyzovaná T4 polynukleotid kinasou probíhá s různou výtěžností pro jednotlivé nukleotidové adukty. Výtěžnost fosforylace pro daný typ aduktu musí být experimentálně stanovena a při kvantitativním vyhodnocování výsledků metody "postlabeling" je třeba ji brát v úvahu¹⁹.

4.2. Metody hmotnostní spektrometrie

Hmotnostní spektrometrie (MS) je pro svou vysokou citlivost a relativní strukturní specifitu předurčena jako metoda pro detekci, charakterizaci a stanovení malých množství aduktů DNA v biologickém materiálu, zejména v kombinaci s HPLC a kapilární elektroforézou (CE). Jako ionizační technika se v poslední době s úspěchem používá hlavně elektrosprej (ESI). Přestože tato technika byla poprvé použita pro analýzu aduktů DNA až Chaudharym a spol. v roce 1995 (cit.²⁰), dnes prakticky vytlačila dříve používanou metodu FAB (fast atom bombardment). Pomocí metod HPLC-ESI-MS lze dosáhnout citlivosti stanovení 1 adukt na 10^7 až 10^8 nukleotidů, takže je možné stanovit i některé endogenní adukty¹⁷. Jiný způsob stanovení aduktů spočívá ve využití plynově-chromatografické separace v kombinaci s hmotnostně-spektrometrickou detekcí (GC-MS). Protože adukty DNA jsou netěkavé, je nutno je nejprve převést hydrolyticky na purinové nebo pyrimidinové báze, a ty pak na těkavé deriváty. To lze s výhodou spojit se zavedením elektroforů do molekuly, takže výsledné deriváty jsou jednak dostatečně těkavé, jednak umožňují velmi citlivou detekci v negativních iontech. Jako elektrofory slouží substituenty bohaté na fluor, hlavně pentafluorfenylmethyl a heptafluorbutanoyl, což poskytuje možnost neobyčejně citlivé detekce metodou elektronového záchytu (electron capture, EC-MS) (cit.²¹). Tímto způsobem bylo dosaženo citlivosti stanovení v řádu 1 adukt na 10⁸ nukleobází. Metoda je vhodná pro stanovení aduktů DNA v moči, tedy derivátů nukleobází odštěpených depurinací za fyziologických podmínek z DNA. Hmotnostně-spektrometrické metody jsou obvykle považovány za strukturně specifické. V případě aduktů DNA však samy o sobě neumožňují exaktní určení jejich struktury. Nejsou schopny spolehlivě určit polohu substituentu na purinovém nebo pyrimidinovém skeletu. Tuto nejistotu lze však odstranit použitím autentických standardů.

Jednou z nejcitlivějších metod stanovení aduktů DNA je akcelerátorová hmotnostní spektrometrie (AMS) (cit.²²). Tato metoda byla původně vyvinuta pro datování stáří hornin pomocí isotopického zastoupení jednotlivých prvků. Neposkytuje ale žádnou informaci o struktuře analytu, je strukturně nespecifická.

4.3. Imunochemické metody

Imunochemické metody jsou mimořádně vhodné pro zpracování velkých sérií podobných vzorků. Vyžadují náročnou a nákladnou přípravu protilátek proti danému analytu, samotné provedení analýzy je však rutinní a poměrně levnou záležitostí. Citlivostí v řádu 1 fmolu analytu je na úrovni nejcitlivějších postupů založených na hmotnostní spektrometrii (kromě AMS). Problémem může být zkřížená reaktivita protilátek vedoucí ke snížení selektivity stanovení. Této menší selektivity je však možné také s výhodou využít v imunoafinitní chromatografii pro účinnou separaci skupin strukturně příbuzných aduktů¹¹. Imunochemické metody se pak používají v kombinaci s jinými, zejména s metodou "postlabeling" a hmotnostně-spektrometrickými metodami.

5. Příprava autentických aduktů DNA

Většina autentických standardů pro analýzu aduktů DNA je dosud připravována neselektivními reakcemi nukleotidů nebo nukleosidů s alkylačními činidly (například s deriváty oxiranu). Tyto reakce vedou zpravidla k bohaté směsi produktů, které je nutno dělit náročnými postupy. Posledním stupněm separace je semi-preparativní HPLC. Takto lze získat miligramová množství látek, která dostačují k určení struktury pomocí spekter UV, hmotnostních a ¹H-NMR. Pro určení polohy substituentu se využívá charakteristických absorpčních pásů v UV spektrech a jejich posunů v závislosti na pH. Tento způsob charakterizace však nesplňuje nároky, kladené na exaktní určení struktury v organické chemii a ponechává značný stupeň nejistoty o poloze substituentu na purinovém či pyrimidinovém jádře. Je proto překvapující, že syntetické postupy jsou dosud málo využívány k přípravě autentických standardů aduktů DNA na úrovni nukleotidů, nukleosidů i samotných bází. O⁶-Deriváty guaninu lze získat z 2-amino-6-chlorpurinu po aktivaci chloru v poloze 6 pomocí trimethylaminu nebo 1,4-diazabicyklo[2.2.2]oktanu (DABCO) a následující reakcí s alkoxidy (obr. 6) (cit.²³). Podobně lze reakcí příslušných chlorpurinů s aminy získat N⁶-deriváty adeninu²⁴. O⁶-Adukty byly získány z deoxyguanosin-3'-fosfátu a příslušného alkoholu Mitsunobuovou reakcí²⁵. Aktivací polohy 2 v deoxyguanosinu byly získány N²-deriváty deoxyguanosinu (obr. 7) (cit.²⁶). Byly popsány syntetické postupy pro přípravu všech polohových isomerů methyladeninu²⁷. Shrnout všechny syntetické postupy vedoucí k aduktům DNA, deriváty samotných nukleobází počínaje a modifikovanými oligonukleotidy konče, není cílem této práce. Lze jen konstatovat, že přes značné množství práce odvedené na tomto poli představuje příprava cílových molekul aduktů DNA značný syntetický problém.

6. Závěr

Deriváty purinových bází, nukleosidů a nukleotidů (adukty DNA) jsou významnými biologickými indikátory poškození DNA mutagenními a karcinogenními látkami. Tyto adukty vznikají jednak v důsledku fyziologických procesů, jednak v důsledku působení mutagenních látek. Byl prokázán příčinný vztah mezi některými adukty DNA a rakovinou. Studium jejich tvorby a osudu v organismu významně přispělo k objasnění procesu karcinogenese a lze očekávat, že bude i nadále přispívat k hlubšímu pochopení tohoto procesu. Adukty DNA mohou také potenciálně sloužit jako podklad pro odhad individuálního rizika vzniku nádorového onemocnění u lidí, kteří byli vystaveni působení mutagenních karcinogenů. Metody

OTBDMS

OH

ÓН

ÓTBDMS

OН

ÓН

CF_SO

Obr. 6. Příprava 2-amino-6-alkoxypurinů

OTBDMS

ÓTBDMS

v. vi

RNH

přípravy těchto látek v množstvích umožňujících spolehlivé určení struktury nebyly dosud prozkoumány tak, jak by odpovídalo jejich významu. Proto zůstávají výzvou pro organické chemiky.

Autoři děkují za finanční podporu MŠMT ČR, výzkumný záměr MSMT 223100001.

LITERATURA

- Shugart L., Bickham J., Jackim G., McMahon G., Ridley W., Stein J., Steinert S., v knize: *Biomarkers. Biochemical, Physiological and Histological Markers of Anthropogenic Stress* (Hugget R. J., Kimerle R., Mehrle P. M., Jr., Bergman H. L., ed.). Lewis Publishers, Boca Raton 1992.
- 2. Barlow T., Takeshita J., Dipple A.: Chem. Res. Toxicol. *11*, 838 (1998).
- 3. Seltzer R. R., Elfarra A. A.: Chem. Res. Toxicol. 9, 875 (1996).
- 4. Kim H.-Y. H., Finneman J. I., Harris C. M., Harris T. M.: Chem. Res. Toxicol. *13*, 625 (2000).
- 5. Grenner G., Schmidt H.-L.: Chem. Ber. 110, 373 (1977).
- 6. Qian Ch., Dipple A.: Chem. Res. Toxicol. 8, 389 (1995).
- Koskinen M., Hemminki K.: Org. Lett. *1*, 1233 (1999).
 Barlow T., Ding J., Vouros P., Dipple A., Chem. Res.
- Toxicol. *10*, 1247 (1997). 9. Lawley P. D., Brookes P.: Biochem. J. *89*, 127 (1963).
- 10. Vodička P., Hemminki K.: Chem.-Biol. Interact. 68, 117 (1988).
- 11. Shuker D. E., Farmer P. B.: Chem. Res. Toxicol. 5, 450 (1992).
- 12. Koskinen M., Plná K.: Chem.-Biol. Interact. 129, 209 (2000).
- 13. Lowe J. P., Silverman B. D.: J. Mol. Structure (Theochem) 179, 47 (1988).
- 14. Sancar A., Sancar G. B.: Annu. Rev. Biochem. 57, 29 (1988).
- 15. Otteneder M., Lutz W. K.: Mutat. Res. 424, 267 (1999).
- Randerath K., Reddy M., Gupta R. C.: Proc. Natl. Acad. Sci. U.S.A. 78, 6126 (1981).
- 17. Farmer P. B., Shuker D. E. G.: Mutat. Res. 424, 275 (1999).

- 18. Farmer P. B.: Mutat. Res. 428, 69 (1999).
- Kumar R., Vodička P., Koivisto P., Peltonen K., Hemminki K.: Carcinogenesis 17, 1297 (1996).
- Chaudhary A. K., Nokubo M., Oglesby T. D., Marnett L. J., Blair I. A.: J. Mass Spectrom. 30, 1157 (1995).
- 21. Saha M., Abushamaa A., Giese R. W.: J. Chromatogr., A 712, 345 (1995).
- 22. Vogel J. S., Turteltaub K. W., Finkel R., Nelson D. E.: Anal. Chem. 67, 353A (1995).
- 23. Linn J. A., McLean E. D., Kelley J. L.: J. Chem. Soc., Chem. Commun. 1994, 913.
- 24. Sugiyama T., Tateba H., Hashizume T.: Agric. Biol. Chem. 44, 2755, (1980).
- 25. Pongracz K., Kaur S., Burlingame A. L., Bodell E. J.: Carcinogenesis *10*, 1009 (1989).
- 26. Edwards Ch., Boche G., Steinbrecher T., Scheer S.: J. Chem. Soc., Perkin Trans. 1, 1887 (1997).
- 27. Fujii T., Itaya T.: Heterocycles 48, 1673 (1998).

I. Linhart and J. Novák (Department of Organic Chemistry, Institute of Chemical Technology, Prague): Purine Base Derivatives as Indicators of Damage to DNA

This paper reviews recent progress in the field of DNA adducts. It is focused on purine derivatives as important biological indicators of damage to DNA and a possible diagnostic tool for diagnosis of the cancer risk. Main sites of the attack in purine and pyrimidine bases are pointed out and representative examples are given of the types of compounds and their metabolites, which are capable of binding covalently to DNA. An overview of specific and non-specific methods for the detection and quantification of DNA adducts is given and their advantages and limitations are discussed. The carcinogenic potential of adducts expressed as the DNA adduct level corresponding to the tumorigenic dose (TD₅₀) is structure-dependent, so that both the level of the adducted DNA and the structure of the adduct formed must be taken into account when evaluating carcinogenic risk. The exact identification of structure of DNA adducts found in biological materials should rely on authentic standards. However, preparative methods for the standards of many known DNA adducts remain a challenge for organic chemists.

FYTOESTROGENY VE VÝŽIVĚ – PŘINÁŠEJÍ UŽITEK NEBO RIZIKO?

JITKA MORAVCOVÁ^a a TEREZA KLEINOVÁ^{a,b}

^aÚstav chemie přírodních látek, Vysoká škola chemicko-technologická v Praze, Technická 5, 166 28 Praha 6, ^bVýzkumný ústav živočišné výroby, Přátelství 815, 104 00 Praha 10 e-mail: Jitka.Moravcova@vscht.cz

Došlo dne 17.I.2002

Klíčová slova: fytoestrogeny, estrogeny, biologické účinky, metabolismus, výživa, sója

Obsah

- 1. Úvod
- Výskyt
- 3. Metabolismus a farmakokinetika 4. Sója jako zdroj fytoestrogenů
- 5. Účinek fytoestrogenů na lidské zdraví
 - 5.1. Kardiovaskulární onemocnění
 - 5.2. Nádorová onemocnění
 - 5.3. Osteoporosa, symptomy menopausy, angiogenese a metabolismus estrogenů
- 6. Závěr

Úvod 1.

Fenolické sekundární metabolity napodobující strukturu

přirozených savčích estrogenů jsou obsaženy ve více než 300 rostlinách¹. Isoflavony, lignany, kumestany a stilbeny (obr. 1) tvoří nejrozšířenější skupiny fytoestrogenů a jsou v rostlinách přítomny především ve formě glykosidů. Pro lidskou populaci je hlavním zdrojem fytoestrogenů potrava, ale není zanedbatelná ani expozice environmentálním estrogenům, tzv. xenoestrogenům. V této souvislosti je významné zjištění, že strava bohatá na fytoestrogeny by mohla výrazně snižovat² interakce slabších xenoestrogenů s estrogenními receptory (ER).

2. Výskyt

Isoflavony jsou taxonometricky rozšířeny v přírodě jen úzce, a to v rostlinách vikvovitých (Viciaceae). Jejich nejbohatším zdrojem je sója luštinatá, dále se vyskytují v červeném jeteli (Trifolium pratense) a v některých léčivých rostlinách, jako je kručinka barvířská (Genista tinctoria) a janovec metlatý (Sarothamnus scoparius) (cit.³). V malé míře jsou zastoupeny i v žitě a výrobcích z něho, objevují se i v pivu a bourbonu. Nově byly nalezeny i v rybízu a dalším drobném ovoci⁴. Sója obsahuje tři hlavní isoflavonové fytoestrogeny, jejichž aglykony jsou daidzein, genistein a glycitein⁵. Formononetin a biochanin A jsou hlavními isoflavony červeného jetele⁶.

Lignany jsou v nejrůznějších semenech, celých zrnech, luscích zeleniny a v ovoci, ale při technologickém zpracování využívajícím moderní techniky mletí je obvykle frakce lignanů oddělena společně se slupkami a vlákninou. Z tohoto důvodu není lidská strava na lignany příliš bohatá. Nejdůležitějším zdrojem lignanů jsou rostlinné oleje, zejména lněný olej, který obsahuje⁷ v sušině sekoisolariciresinol (SECO)

Obr. 1. Struktura vybraných fytoestrogenů genisteinu (isoflavon), kumestrolu (kumestan), enterolaktonu (lignan) a resveratrolu (stilben) v porovnání s přirozeným (estradiol) a syntetickým (diethylstilbestrol) estrogenem, antiestrogenem (tamoxifen) a účinným syntetickým isoflavonem (ipriflavon)

v koncentraci 0,8 mg.g⁻¹ vedle minoritního matairesinolu; lněná semena obsahují SECO kolem 3,7 a po odtučnění 5,5 mg.g⁻¹. Dalším zdrojem lignanů je celozrnné žitné pečivo nebo různé typy vlákniny^{8,9} a byly nalezeny i v drobném ovoci¹⁰. Dříve se předpokládalo, že lignany jsou metabolity pouze vyšších rostlin, ale nyní se ví, že existují i přirozené savčí lignany, enterodiol a enterolakton, které byly dokázány v biologických tekutinách lidí i zvířat.

Ačkoliv byla z rostlin izolována řada kumestanů¹¹, z hlediska estrogenní aktivity a obsahu v rostlinném materiálu je nejdůležitější kumestrol, který je základním fytoestrogenem vojtěšky (*Medicago sativa*) (cit.¹²). Pro člověka je opět zdrojem kumestanů potrava, resp. vhodné dietetické doplňky, a to hlavně klíčky vojtěšky s obsahem¹³ kumestrolu v sušině 5,6 mg.g⁻¹.

Z derivátů stilbenu je nejdůležitější resveratrol, který je nejvíce obsažen ve slupkách červené révy vinné (*Vitis vini-fera*). Jeho koncentrace ve šťávě z červeného hrozna je¹⁴ od 6,3 do 15,3 mg.l⁻¹, zatímco pro bílé odrůdy se hodnota pohybuje od 0,2 do 0,5 mg.l⁻¹.

3. Metabolismus a farmakokinetika

Isoflavony, lignany i stilbeny procházejí katabolismem podobným jak u lidí, tak u zvířat, zatímco metabolismus kumestanů nebyl doposud popsán.

Absorpce fytoestrogenů je zahájena hydrolýzou glykosidů střevními bakteriálními β -glukosidasami, kyselinou chlorovodíkovou v žaludku nebo β -glukosidasami přítomnými v potravě¹⁵. Po absorpci v tenkém střevě jsou volné aglykony transformovány v játrech na glukuronidy a sulfoglukuronidy. Podle profilu konjugátů vylučovaných močí je první způsob, tj. přes glukuronáty, dominantní¹⁶. Tyto konjugáty jsou podobně jako u endogenních estrogenů vylučovány močí a v menší míře stolicí, rovněž přecházejí do žluči a dostávají se do krevního řečiště. Po vyloučení do žluči mohou být konjugované fytoestrogeny znovu hydrolyzovány střevními bakteriemi. Dekonjugace pak může vést k opakované absorpci a degradaci v tenkém střevu¹⁷. Flavony inhibují konjugaci resveratrolu, a tím by mohly zvyšovat jeho biologickou dostupnost¹⁸ pro organismus.

Daidzein je metabolizován¹⁹ na dihydrodaidzein, který se dále transformuje buď na equol nebo O-demethylangolensin (ODMA). Schopnost produkovat oba tyto metabolity daidzeinu je individuální a udává se, že jen kolem 30–40 % populace vylučuje po podání isoflavonů prokazatelně equol^{20,21}. Metabolismus dětí v neonatálním věku neprodukuje equol vůbec díky nepřítomnosti odpovídající střevní mikroflory²². Genistein přechází na dihydrogenistein, který je dále metabolizován na 6'-hydroxy-ODMA, a konečným metabolitem je p-ethylfenol. Nedávno byla identifikována kyselina p-hydroxyfenyl-2-propionová jako nový metabolit genisteinu²³. Rostlinné lignany SECO a matairesinol jsou lidskými střevními bakteriemi přeměněny na savčí lignany, enterolakton a enterodiol^{24,25}. Důležitým poznatkem je, že metabolismus fytoestrogenů je variabilní a individuální a závisí na řadě faktorů, jako je pohlaví, stáří, fáze menstruačního cyklu, dávka, doba expozice apod.

Málo je známo o distribuci fytoestrogenů v různých tkáních. Po intravenosním podání daidzeinu krysím samcům byla nalezena vysoká koncentrace daidzeinu v plazmě, játrech, plicích a ledvinách, střední v kosterním svalstvu, srdci a slezině a jen nízká v mozku a varlatech²⁶. Hladina genisteinu v plazmě po orálním podání krysám byla vyšší u samců než u samic a nejvyšší koncentrace genisteinu, jeho konjugátů a metabolitů byla stanovena ve vagíně, děloze, vaječnících a prostatě²⁷. Koncentrace isoflavonů v játrech, ledvinách a děloze krys je zhruba 2 až 5× vyšší než v plazmě²⁸.

U skupiny žen v postmenopause²⁹ a zdravých mužů³⁰ ve věku 20-40 let bylo zjištěno, že výtěžnost isoflavonů v moči byla vyšší, pokud byl podáván tempeh, pokrm vyráběný ze sójových fazolí fermentačně. To by mohlo naznačovat, že fermentace zvyšuje biologickou dostupnost isoflavonů sóji. Výtěžnost isoflavonů v moči sledované skupiny zdravých mladých žen³¹ a mužů³² po konzumaci sójového mléka byla v rozmezí 15-66 %. Během těchto studií, které trvaly jeden měsíc, poklesla výtěžnost daidzeinu a genisteinu u žen o 1/3, zatímco u mužů byla tato hodnota stálá. Pokud bylo sójové mléko podáváno krátkodobě, ženy vylučovaly více genisteinu a daidzeinu než muži³³. Tyto výsledky naznačují možnost změn v metabolismu isoflavonů u žen vystavených dlouhodobé expozici, proto autoři rozšířili záběr dlouhodobé studie i na sledování equolu³⁴. Potvrdili, že výtěžnost daidzeinu a genisteinu po 4 týdnech každodenní konzumace sóji poklesne u žen o 31 až 42 % a zároveň se zkrátí poločas absorpce a vylučování. Naproti tomu výtěžnost equolu významně vzrostla 3 až 100× a jeho poločas vylučování vzrostl rovněž. Zdá se, že chronická expozice isoflavony způsobí u žen rychlejší metabolickou degradaci za vzniku neisoflavonových metabolitů (equol). Zvýšená produkce equolu, silnějšího a déle působícího estrogenu, než jsou isoflavony, může měnit a maskovat estrogenní potenci isoflavonových prekurzorů konzumovaných v potravě.

Dále se ukázalo^{35,36}, že ženy, které vylučují stolicí méně než 1 % podávaného množství isoflavonů, vylučují i močí jen 10-16 %. Druhá část žen vylučovala vyšší koncentrace isoflavonů jak stolicí (5 %), tak močí (27-32 %). Tato data podporují teorii o podstatných rozdílech v individuálních metabolismech. Přitom vylučování daidzeinu močí bylo vždy vyšší než v případě genisteinu³⁵, což by podle autorů mohlo naznačovat lepší biologickou dostupnost daidzeinu. Jiná studie rovněž sledující skupinu zdravých mužů³⁷ popisuje vyšší výtěžnost pro daidzein (62 %) než genistein (22 %). Ovšem podle těchto autorů, je to právě genistein, který je efektivněji absorbován z intestinálního traktu a zdržuje se v enterohepatální cirkulaci déle, takže může působit silněji. Důležité a zajímavé výsledky přináší práce⁴⁵, zabývající se monitorováním isoflavonů v moči, plazmě a mateřském mléku po jednorázovém a opakovaném podání sójových fazolí. Příjem fytoestrogenů vyvolal rychlou a na dávce závislou odpověď v mateřském mléku, maximální koncentrace isoflavonů bylo dosaženo za 10-14 hodin a eliminace byla dokončena za 2-4 dny. Podobně jako u moči a plazmy i v mateřském mléce probíhala eliminace ve dvou vlnách, ta druhá byla vyvolána pravděpodobně uvolněním isoflavonů z enterohepatální cirkulace. Tento proces se ostatně u metabolismu fytoestrogenů uplatňuje často³⁸. Jestliže lze o metabolismu isoflavonů říci, že je variabilní, pak toto tvrzení platí v ještě větší míře pro lignany³⁹. Muži vylučují více enterolaktonu a méně enterodiolu než ženy²⁵ a lignany jsou vylučovány také především močí, a to ve formě konjugátů, a dále stolicí ve volné, nekonjugované podobě²⁹.

4. Sója jako zdroj fytoestrogenů

Typickým zdrojem fytoestrogenů je potrava bohatá na sóju a její produkty⁴⁰. V souvislosti s nemocí šílených krav stoupá ve výživě význam sójového masa, např. jako vhodné náhražky masových karbanátků v řetězcích rychlého občerstvení. V Asii se těší značné oblibě pokrmy vyráběné fermentací sójových fazolí, jako je např. tempeh, miso nebo sójová pasta, které obsahují isoflavony hlavně ve formě volných aglykonů. Obsah fytoestrogenů v potravinách do značné míry závisí na technologickém zpracování suroviny. Někteří autoři popisují mírné snížení obsahu daidzeinu a genisteinu při mletí sójových fazolí^{5,41}, jiní podobný vliv nezaznamenali⁴¹. Při vaření se daidzein a genistein nerozkládají⁴², ale pražení fazolí vyvolává ztráty okolo 21 % pro genistein a 15 % pro daidzein. Zmrazené sójové fazole obsahovaly o 20-30 % méně genisteinu a daidzeinu ve srovnání s čerstvými a rovněž skladování syrových fazolí způsobilo⁴² pokles obsahu fytoestrogenů až o 75 %. Výroba tofu neovlivňuje obsah isoflavonů^{42,43}. Naopak při výrobě sójových párků nebo tofu jogurtu se sníží obsah fytoestrogenů až desetkrát. Odstranění tuků z práškových sójových surovin vede⁴² obvykle ke snížení obsahu isoflavonů o 30-40 %. Sójový protein izolovaný extrakcí ethanolem obsahuje jen asi 50 % fytoestrogenů původně v sóje přítomných⁴⁴.

Většina autorů se přiklání k názoru, že hlavním důvodem rozdílné koncentrace fytoestrogenů v podobných potravinách (tab. I) je nutno hledat v původu vstupní suroviny, neboť např. sójové fazole z Japonska a USA mají zhruba stejný obsah daidzeinu, ale liší se až o 27 % v obsahu genisteinu. Dalším faktorem může být doba skladování potravin v obchodech, klimatické a pěstební podmínky a vegetační zralost rostlinné suroviny.

O tom, kolik fytoestrogenů přijímá člověk s potravou, rozhodují v prvé řadě tradiční národní zvyky. Většina asijské populace konzumuje 20–80 mg genisteinu za den, zatímco příjem genisteinu v USA činí pouze 1–3 mg denně⁵³. Dalším nezanedbatelným vlivem je skladba potravy v různých dietách. Ti lidé, kteří upřednostňují makrobiotickou stravu, vylučují močí 4× více fytoestrogenů než laktovegetariáni, a ti zase asi 2× více než konzumenti jak živočišné, tak i rostlinné stravy⁵⁴.

5. Účinek fytoestrogenů na lidské zdraví

Prokazatelně nižší výskyt nádorových onemocnění prsů, vaječníků, dělohy a prostaty v asijských zemích ve srovnání se západní civilizací se zdá být způsoben spíše životním stylem než geneticky^{55,56}. A protože tradiční asijská kuchyně je bohatá na luštěniny a sóju obzvláště, vyvolalo jednoduché konstatování, že pravděpodobnost výskytu nádorů je až 20x nižší, obrovskou vlnu zájmu o isoflavony. Podobný zájem vyvolal i resveratrol v souvislosti s tzv. francouzským paradoxem, tj. nižší úmrtností na koronární a srdeční nemoci a určité druhy rakoviny ve Francii. Účinek fytoestrogenů pokrývá spektrum potenciálních mechanismů, které mohou nakonec vést k estrogennímu nebo antiestrogennímu efektu na metabolismus, a to v závislosti na řadě faktorů, jako je jejich koncentrace, koncentrace endogenních estrogenů, typ receptoru a dále na individuálních charakteristikách subjektů, jako je pohlaví, věk atd.

Tabulka I

Obsah daidzeinu a genisteinu v sóje a různých potravinách vyrobených ze sóji^a

Potravina	Daidzein [mg.kg ⁻¹]	Genistein [mg.kg ⁻¹]	Lit.
Fazole ^b	1001	1023	45
Fazole ^b	676	940	45
Fazole	1006	1382	45
Fazole ^c	848	1105	45
Fazole	1355	2676	44,47
Fazole ^c	941	1426	44,47
Mouka	654	1122	45
Mouka	412	969	44,47
Mouka	674	969	48
Mouka	789	1069	42
Mouka	658-742	837–939	43
Mouka	406	516	49
Karbanátek	26	83	44,47
Lupínky	1165	1951	50
Lupínky	419	1411	51
Lupínky	721	1222	52
Tofu	113	166	45
Tofu	238	245	44,47
Tofu	76–97	187-216	46
Tofu	644	727	49
Tofu	258	377	42
Tofu	438-1036	910-1420	47
Tofu	840	1233	47
Tempeh	405	422	44,47
Miso	1272	281	44,47
Miso	2107	227	44,47
Tofu jogurt	103	162	44,47
Parmezán	26	6	44,47
Čedar	83	62	44,47
Protein 1	89	373	44,47
Protein 2	191	640	44,47
Párky	55	129	44,47

^a Vztaženo na sušinu, ^b stejná surovina, nákup květen 93 a leden 94, ^c pražené

Fytoestrogeny jsou slabé estrogeny s *in vivo* aktivitou 100 až 1000× slabší než estradiol^{57–59}, ale mohou být v těle přítomny v koncentracích až 100× vyšších než endogenní estrogeny^{53,60}. Endogenní receptory existují ve dvou subtypech: dlouhou dobu známý typ ERa a v roce 1996 objevený typ ERb. Estrogenní afinita⁶¹ je pro oba subtypy různá: estradiol>> kumestrol>genistein>daidzein>biochanin A>for- mononetin≈ ipriflavon pro ERa a estradiol>>genistein≈ kumestrol>daidzein>biochanin A>formononetin pro ERb. Genistein má k receptoru ERb asi 7× vyšší afinitu⁶² než k receptoru ERa. Resveratrol má stejnou afinitu k oběma typům receptorů⁶³.

Ovšem účinek fytoestrogenů se nemusí projevovat pouze prostřednictvím estrogenních receptorů, ale mohou ovlivňovat různé enzymy, syntézu proteinů, transport vápníku, oxidaci lipidů, diferenciaci buněk nebo účinek růstových faktorů. Biosyntéza a účinky lignanů⁶⁴ a syntéza a účinky resveratrolu⁶⁵ byly nedávno předmětem referátových článků.

5.1. Kardiovaskulární onemocnění

Obecně je přijímáno tvrzení, že nižší nárůst kardiovaskulárních onemocnění asijské populace je výsledkem vysokého příjmu fytoestrogenů v potravinách⁶⁶. Ovšem je nutné připustit jisté zkreslení, protože se mohou uplatňovat i jiné vlivy, jako např. nižší obsah nasycených tuků v potravě asijských národů. Substituční hormonální léčba (HRT) znatelně snižuje riziko úmrtí žen v postmenopause na kardiovaskulární onemocnění (až o 50 %) a rovněž snižuje i celkovou úmrtnost ⁶⁷. Ovšem po zhruba 10 letech se vliv na celkovou úmrtnost ztrácí, protože vzrůstá pravděpodobnost úmrtí na rakovinu prsů vyvolanou dlouhodobým působením HRT. Několik epidemiologických studií ukazuje na snížení nebezpečí srdečních onemocnění a možnou kardioprotektivní roli fytoestrogenů pro ženy v postmenopause^{68–70}.

Fytoestrogeny mohou mít pozitivní vliv na srdeční onemocnění i prostřednictvím snižování koncentrace lipidů a lipoproteinů v plazmě. Snižování hladiny cholesterolu u zvířat sójovými proteiny je známé už delší dobu, ale u člověka byl tento vliv popsán nedávno⁷¹. Nejvyšší účinek byl zaznamenán u těch dobrovolníků, kteří měli na začátku pokusu nejvyšší hladinu cholesterolu. To může být důvod, proč jiné studie^{72–77} vliv fytoestrogenů na snižování cholesterolu nenalezly. Ani pozitivní výsledky dalších pokusů nepřinesly jednoznačnou odpověď, neboť v několika případech byly připsány špatnému výběru a velikosti sledované skupiny osob, případně jiným složkám podávaného přípravku než isoflavonům⁷⁸.

Isoflavony sóji mohou stabilizovat⁷⁹ LDL lipoproteiny proti oxidaci, o níž se předpokládá, že probíhá v arteriích a je považována za jednu z možných příčin vzniku aterosklerosy. Kumestrol je účinnější inhibitor oxidace než 17β-estradiol⁸⁰, zatímco isoflavony byly účinné méně. Pro kombinaci kumestrol-kvercetin byl popsán synergický efekt, který byl ale menší než pro dvojici equol-kvercetin⁸¹. Fytoestrogeny jsou v poslední době studovány i jako zachycovače volných radikálů. V popředí zájmu stojí hlavně resveratrol, účinný zejména proti hydroxylovým radikálům⁸², a genistein a equol, jejichž aktivita je srovnatelná s kvercetinem⁸¹. Synergickým efektem je také možno vysvětlit ten fakt, že komplex fenolických látek izolovaný z červeného vína měl při stejném dávkování vyšší antioxidační aktivitu než resveratrol sám⁸³. Velice nadějné závěry o přímém vlivu fytoestrogenů sóji na potlačení aterosklerosy opic přinesla studie⁸⁴, ve které preparát s isoflavony výrazně potlačil rozvoj aterosklerosy, který nebylo možno vysvětlit pouhým snížením hladiny cholesterolu v plazmě. Vezme-li se v úvahu, že isoflavony zlepšují vasodilataci u žen v postmenopause^{75,85}, jsou jasnými kandidáty pro účinnou prevenci aterosklerosy.

5.2. Nádorová onemocnění

V populaci se západním životním stylem je nárůst onemocnění rakovinou prsů, vaječníků, dělohy a prostaty nejvyšší, zatímco u asijské populace je prokazatelně nejnižší^{56,57}. V současné době je rakovina prsů nejčastější nádorové onemocnění žen v USA a podle počtu úmrtí na onkologické choroby jí patří druhé místo⁸⁶. Význam fytoestrogenů v prevenci rakoviny prsů jasně dokumentuje studie zahrnující 144 žen s nově diagnostikovaným onemocněním, u kterých byly

plazma a moč analyzovány ještě před začátkem terapie⁸⁷. Ukázalo se, že u žen s vysokým obsahem hlavně equolu a enterolaktonu je podstatně nižší riziko vzniku a rozvinutí rakoviny prsů. Pro ženy v postmenopause je charakteristické, že ty, které onemocněly rakovinou prsů, vylučují močí podstatně menší množství lignanů než ženy zdravé, ať už jsou jejich stravovací návyky jakékoliv^{60,88}. Nejdůležitějšími markery byly shledány právě equol a enterolakton⁶⁰. Zajímavé je, že Asiaté, kteří po přesídlení do USA přebírají místní stravovací návyky, ztrácejí svoji přirozenou ochranu proti rakovině⁸⁶ během 1–2 generací⁸⁹. U mužů se přepokládá, že fytoestrogeny mohou mít protektivní účinek proti rakovině prostaty⁹⁰. Epidemiologické studie ukazují, že výskyt rakoviny prostaty u Afroameričanů je 125× vyšší než u čínských mužů⁹¹. Pravděpodobnost vzniku rakoviny prostaty je snížena až na 50 %, je-li více než 5× týdně konzumováno tofu, jak prokázala japonská studie⁹². Asijští muži mají vyšší hladinu fytoestrogenů v plazmě a v moči^{93,94} i v sekretu prostatických žláz95, což je v souladu s teorií o preventivní roli těchto rostlinných látek. I muži z oblasti kolem Středozemního moře jsou více chráněni96 proti rakovině prostaty díky lepšímu složení potravy. Rovněž pokusy in vitro podporují teorii, že fytoestrogeny (biochanin A, daidzein a genistein) jsou dietetické ochranné látky proti rakovině prostaty⁹⁷.

Konzumace sóji a sójových výrobků vykazuje negativní korelaci i s výskytem jiných karcinomů, než jsou nádory endokrinního systému. Tak tofu potlačuje riziko vzniku rakoviny žaludku u japonské populace⁹⁸ a rakoviny plic čínských mužů⁹⁹. Denní konzumace misa je spojena se snížením pravděpodobnosti vzniku rakoviny žaludku u japonských mužů¹⁰⁰. Číňané, jejichž roční spotřeba sójových fazolí je vyšší než 5 kg, jsou o 40 % méně ohroženi rakovinou žaludku¹⁰¹. Konzumace sójových výhonků a tofu vyšší než 9 kg za rok ve srovnání s dávkou menší než 2 kg za rok snižuje nebezpečí vzniku kolorektálního karcinomu¹⁰².

Závěry epidemiologických studií a pokusů na zvířatech nejsou bohužel jednoznačně podpořeny experimenty s buněčnými kulturami, ačkoliv je efekt in vitro fytoestrogenů na růst nádorových buněk zkoumán důkladně za různých experimentálních podmínek. Ve většině prací je sice popsán inhibiční efekt fytoestrogenů, ale v řadě případů je inhibice dosaženo až při koncentracích řádově přesahujících fyziologické hladiny. Tak kupříkladu genistein vykazoval antiestrogenní efekt a inhiboval^{57,103}proliferaci buněk linie MCF-7 nádorů prsů *in vitro* při koncentraci vyšší než 10 µM. Pokud se koncentrace genisteinu pohybovala ve fyziologickém rozmezí (1 nM až 10 µM), pak naopak růst buněk MCF-7 stimuloval. Při posuzování vlivu fytoestrogenů by se nemělo zapomínat na to, že jako slabé estrogeny budou za jistých podmínek vždy stimulovat proliferaci buněk a genovou expresi. Jako důležitá podmínka může totiž vystupovat např. přítomnost estradiolu, který je běžně nacházen u žen i mužů ve všech fázích životního cyklu. Další důležitou okolností může být zvolený typ nádorových linií použitých k experimentům. Nicméně výsledky dvou pokusů in vivo z poslední doby na zvířatech mohou zásadně ovlivnit orientaci dalších prací v této oblasti a možná i otevřít odlišný pohled na roli fytoestrogenů. Jestliže byl podáván genistein samicím myší, kterým byly subkutánně implantovány nádorové buňky MCF-7, pak rychlost růstu nádorů v této skupině byla vyšší než ve skupině kontrolní¹⁰³. Pokud byl genistein podáván březím samicím myší, pak urychloval podobně jako estradiol ve stejné dávce pohlavní zralost mláďat--samic¹⁰⁴ a, co je velmi důležité, zvyšoval u nich počet center maligní transformace v mléčné žláze. Autoři odvozují, že expozice fytoestrogeny v těhotenství zvyšuje riziko vzniku karcinomu mléčné žlázy mezi potomky-dcerami. V porovnání s tím přineslo sledování 48 žen, které trpěly benigními i maligními tumory prsů, výsledky zcela neočekávané; fytoestrogeny stimulovaly proliferaci zdravých buněk tkáně mléčné žlázy¹⁰⁵.

Účinky fytoestrogenů na různé karcinomy mohou být připsány řadě mechanismů. Jednak se jistě uplatňuje jak jejich estrogenní aktivita, tak antiestrogenní, která převažuje za přítomnosti endogenních estrogenů. Konečně inhibice buněk MCF-7 vysokými koncentracemi fytoestrogenů je pravděpodobně zcela nezávislá na interakci s ER¹⁰⁶. V těchto i dalších případech se klíčovým mechanismem stává inhibice enzymů, které jsou spojeny s růstem buněk (ornithindekarboxylasa, proteintyrosinkinasa a DNA-topoisomerasy), nebo enzymů řídících produkci estronu z androgenů (aromatasa).

Isoflavony, speciálně genistein, jsou inhibitory^{107,108} proteintyrosinkinasy. Genistein dále snižuje růst, indukuje díferenciaci a inhibuje proliferaci leukemických buněk a melanomů^{109,110}. Biochanin A a genistein mají cytotoxický efekt na karcinom žaludku a tenkého střeva¹¹¹ a podle nejnovějších výsledků se pravděpodobně při inhibici kolorektálního karcinomu uplatňuje i mechanismus aktivace enzymů, jako je NADPH-chinonreduktasa, která chrání buňky proti mutagennímu a karcinogennímu účinku volných radikálů. Pořadí aktivace bylo: enterolakton>genistein>>biochanin A>>kumestrol¹¹². DNA-topoisomerasy katalyzují topologické změny v DNA a jsou nezbytné pro replikaci DNA. Genistein inhibuje113 jak topoisomerasu I, tak II v koncentracích okolo 7-20 μm. Aromatasa katalyzuje rychlost určující stupeň v syntéze estrogenů, a proto jsou její inhibitory schopny modifikovat hladinu estrogenů u žen. Isoflavony obecně jsou slabšími inhibitory aromatasy než flavony¹¹⁴ a jejich aktivita je různá v závislosti na zdroji enzymu.

Za 20 let mapování výskytu nádorových onemocnění je vidět markantní nárůst kolorektálního karcinomu bez rozdílu pohlaví, karcinomu prostaty u mužů a karcinomu prsů a dělohy u žen. Tento trend je dáván do přímé souvislosti se zvyšováním podílu tuků a masa v potravě a tvoří základ strategie prevence rakoviny cestou zvyšování denní konzumace zeleniny, ovoce a vlákniny.

5.3. Osteoporosa, symptomy menopausy, angiogenese a metabolismus estrogenů

Postupné řídnutí kostí je přirozeným fyziologickým projevem stáří a souvisí se snížením produkce steroidů v organismu. Protože četnost zlomenin krčků či zápěstí je nižší v Asii než ve většině západních zemí¹¹⁵, opět to je konzumace fytoestrogenů, na kterou je kladen důraz. Riziko postmenopausální osteoporosy žen snižuje hormonální léčba^{116,117}, ačkoliv není doposud jasné, jakým mechanismem. Proto se předpokládá, že fytoestrogeny jako slabé estrogeny by mohly působit preventivně proti osteoporose. Nepřímý důkaz této teorii poskytuje i fakt, že ipriflavon v denní dávce 200–600 mg zvyšuje hmotnost kostí¹¹⁷. Doposud publikované práce zatím nepřinášejí příliš optimistické závěry. Sledování 67 holandských žen v postmenopause po dobu 10 let nepotvrdilo preventivní efekt nízké dlouhodobé expozice fytoestrogeny¹¹⁸. Fytoestrogeny ovšem mohou přispívat k prevenci osteoporosy i jinými cestami než interakcemi s ER. Předně jsou potraviny ze sóji dobrým zdrojem vápníku a dále mohou isoflavony až o 50 % snižovat ztráty vápníku vylučovaného močí¹¹⁹. Pro jednoznačné konstatování o vlivu fytoestrogenů na osteoporosu zatím chybí dostatek experimentálních údajů. Bylo by nebezpečné odvozovat jejich účinky pouze na základě aktivity ipriflavonu, jehož jedním metabolitem je daidzein¹²⁰. Navíc terapeuticky účinné dávky ipriflavonu mnohonásobně převyšují reálnou hladinu isoflavonů dosažitelnou pouhou konzumací potravin ze sóji.

Nástup menopausy doprovází řada symptomů, z nichž návaly horka jsou nejméně příjemné a jsou popisovány jako méně časté u japonských žen než u kanadských¹²¹ a současně pouze 4 % japonských žen v postmenopause užívá HRT ve srovnání se 30 % žen v USA (cit.¹²²). Ačkoliv mohou být rozdíly v symptomech menopausy žen různých etnik vyvolány různými faktory, někteří odborníci¹²³ je přičítají dietetickým fytoestrogenům. Prozatím bylo publikováno pouze několik prácí^{124–126}sledujících četnost návalů v závislosti na podávání fytoestrogenů a ani jedna z nich jednoznačně pozitivní vliv nepotvrzuje.

Fytoestrogeny jsou schopny potlačit angiogenesi¹²⁷, která se projevuje abnormálním bujením krevních cév, nejčastěji kapilár v nose, plicích, gastrointestinálním traktu nebo na kůži. Z tohoto pohledu se jeví jako perspektivní genistein, u něhož byl prokázán zpomalující efekt na růst endothelu buněk krevních kapilár izolovaných z hovězího mozku¹²⁸.

Obecně je přijímán názor, že čím je delší doba, po kterou je žena vystavena účinku estrogenů, tím je vyšší pravděpodobnost vzniku rakoviny prsů, vaječníků a dělohy. Protože jen asi 5 % všech případů rakoviny je možno přisoudit genetickým dispozicím, mohla by mít protektivní účinek dieta cestou snížení koncentrace endogenních estrogenů, neboť hladina estrogenů je u pacientek s rakovinou prsů ve srovnání se zdravou populací vyšší¹²⁹. Zatím jen relativně málo prací se zabývalo vlivem fytoestrogenů na hladinu endogenních estrogenů a hormonů, a to ještě nejsou jejich výsledky zcela konzistentní. Zatímco jedni autoři potvrzují po konzumaci sójových isoflavonů¹³⁰ pokles koncentrace estradiolu, jiní nalezli¹³¹ na-opak nárůst. Závěry sledování¹³² 12 žen v premenopause po dobu 100 dnů lze považovat za velice závažné. Podání isoflavonů snížilo koncentraci vylučovaného estradiolu, estronu a estriolu stejně jako jejich genotoxických metabolitů 16α-hydroxyestronu, 4-hydroxyestrenonu a 4-hydroxyestradiolu. Výsledky ukazují, že isoflavony sóji skutečně potlačují syntézu estrogenů a mění jejich metabolismus směrem od genotoxických metabolitů k metabolitům inaktivním.

6. Závěr

Přes obrovský zájem o fytoestrogeny a jejich účinky na lidské zdraví (47 referátových článků v roce 2000, 46 do listopadu 2001) stále ještě existují nezodpovězené otázky a nové výsledky bádání přinášejí nové problémy. I když zatím nelze doporučit nějakou optimální denní dávku fytoestrogenů, zdá se, že většinový názor odborníků je, že jejich příznivý vliv na lidské zdraví převažuje nad možnými riziky. Tato práce je součástí řešení výzkumného záměru MŠMT č. 223300004.

LITERATURA

- Farnsworth N. R., Bingel A. S., Cordell G. A., Crane F. A., Fond H. H. S.: J. Pharmacol. Sci. 64, 717 (1975).
- 2. Zava D. T., Blen M., Duwe G.: Environ. Health Perspect. Suppl. *105*, 637 (1997).
- 3. Moravcová J., Vänttinen K.: Hort. Sci. 26, 63 (1999).
- 4. Liggins J., Bluck L. J. C., Runswick S., Atkinson C., Coward W. A., Bingham S. A.: J. Nutr. Biochem. 11, 326 (2000).
- Kudou S., Fleury Y., Welti D., Mangnolato D., Uchida T., Kitamura K., Okubo K.: Agric. Biol. Chem. 55, 2227 (1991).
- 6. Bradbury R. B., White D. E.: Vitam. Horm. 12, 207 (1954).
- Axelson M., Sjovall J., Gustafsson B. E., Setchell K. D. R.: Nature 298, 659 (1982).
- Setchell K. D. R., Lawson A. M., Mitchell F. L., Adlercreutz H., Kirk D. N.: Nature 587, 740 (1980).
- Adlercreutz H., ve sborníku: COST Action 92, Diet. Fibre Ferment. Colon Proc. Workshop (Maelki Y., Cummings J. H., ed.), str. 324, Luxembourg 1996; Chem. Abstr. 126, 376698 (1997).
- Mazur W. M., Uehara M., Wähälä K., Adlercreutz H.: Br. J. Nutr. 83, 381 (2000).
- Wong E., v knize: *The Flavanoids* (Harbourne J. B., Mabry T. J., Mahry H., ed.), str. 780. Chapman Hall, London 1975.
- 12. Kalač P., Míka V., v knize: Přirozené škodlivé látky v rostlinných krmivech, str. 99. Ústav zemědělských a potravinářských informací, Praha 1997.
- Franke A. A., Custer L. J., Cerna C. M., Narala K. N.: Proc. Soc. Exp. Biol. Med. 208, 18 (1995).
- Nikfardjam M. P., Schmitt K., Ruhl E. H., Patz C.-D., Dietrich H.: Dtsch. Lebensm.–Rundsch. 96, 319 (2000).
- Kelly G. E., Nelson C., Waring M. A., Joannou G. E., Reeder A. Y.: Clin. Chim. Acta 223, 9 (1993).
- Adlercreutz H., Van der Wildtz J., Kinzel J., Attala H., Wähälä K., Mäkelä T., Hase T., Fotsis T.: J. Steroid. Biochem. Molec. Biol. 52, 97 (1995).
- Xu X., Harris K. S., Wang H. J., Murphy P. A., Hendrich S.: J. Nutr. *125*, 97 (1995).
- De Santi C., Pietrabissa A., Mosca F., Pacifici G. M., Xenobiotica 30, 1047 (2000).
- Joannou G. E., Kelly G. E., Reeder A. Y., Waring M., Nelson C.: J. Steroid. Biochem. Molec. Biol. 54, 1677 (1995).
- 20. Setchell K. D. R., Borriello S. P., Hulme P., Kirk D. N., Axelson M.: Am. J. Clin. Nutr. 40, 569 (1984).
- 21. Kelly G. E., Nelson C., Waring M. A., Joannou G. E., Reeder A. Y.: Clin. Chem. Acta 223, 9 (1993).
- Hanley A. B., Oehlschlager S. L., McBride J., Popping B., Smith R., Damant A., Barnes K., Fewtrell M.: Spec. Publ. R.Soc. Chem. 248, 146 (2000).
- Coldham N. G., Howells L. C., Santi A., Montesissa C., Langlais C., King L. J.: J. Steroid Biochem. Mol. Biol. 70, 169 (1999).

Referáty

- 24. Borriello S. P., Setchell K. D. R., Axelson M., Lawson A. M.: J. Appl. Bacteriol. 58, 37 (1985).
- 25. Kirkman L. M., Lampe J. W., Campbell D. R., Martin M. C., Slavin J. L.: Nutr. Cancer 24, 1 (1995).
- 26. Yueh T. L., Chu H. Y.: Sci. Sin. 20, 513 (1977).
- 27. Coldham N. G., Sauer M. J.: Toxicol. Appl. Pharmacol. 164, 206 (2000).
- 28. Janning P., Schuhmacher U. S., Upmeier A., Diel O., Michna H., Degen G. H., Bolt H. M.: Arch. Toxicol. 74, 421 (2000).
- 29. Hutchins A. M., Lampe J. W., Martini M. C., Campbell D. R., Slavin J. L.: J. Am. Diet Assoc. 95, 769 (1995).
- Hutchins A. M., Slavin J. L., Lampe J. W.: J. Am. Diet Assoc. 95, 545 (1995).
- 31. Lu L. J., Anderson K. E., Grady J. J., Nagamani M.: Cancer Epidemiol. Biomarkers Prev. 5, 63 (1996).
- 32. Lu L. J., Grady J. J., Marshall M. V., Ramanujam V. M., Anderson K. E.: Nutr. Cancer 24, 311 (1995).
- Lu L. J., Broemeling L. D., Marshall M. V., Ramanujam V. M.: Cancer Epidemiol. Biomarkers Prev. 4, 497 (1995).
- 34. Lu L. J., Sin S. N., Grady J. J., Nagamani M., Anderson K. E.: Nutr. Cancer 26, 289 (1996).
- 35. Xu X., Wang H. J., Murphy P. A., Cook L., Hendrich S.: J. Nutr. 124, 825 (1994).
- 36. Xu X., Harris K. S., Wang H. J., Murphy P. A., Hendrich S.: J. Nutr. 125, 307 (1995).
- 37. King R. A., Bursill D. B.: Am. J. Clin. Nutr. 67, 867 (1998).
- 38. Gamache P. H., Acworth I. N.: Proc. Soc. Exp. Biol. Med. 217, 274 (1998).
- 39. Gamache P. H., Acworth I. N.: Proc. Soc. Exp. Biol. Med. 217, 274 (1998).
- 40. Barnes S.: Proc. Soc. Exp. Biol. Med. 217, 386 (1998).
- 41. Eldridge A. C., Kwolek W. F.: J. Agric. Food Chem. *31*, 394 (1983).
- 42. Franke A. A., Custer L. J., Cerna C. M., Narala K. K.: J. Agric. Food Chem. 42, 1905 (1994).
- 43. Coward L., Barnes N. C., Setchell K. D. R., Barnes S.: J. Agric. Food Chem. *41*, 1961 (1993).
- 44. Wang H.-J., Murphy D. A.: J. Agric. Food Chem. 42, 1666 (1994).
- 45. Franke A. A., Custer L. J., Wang W., Shi C. Y.: Proc. Soc. Exp. Biol. Med. 217, 263 (1998).
- 46. Dwyer J. T., Goldin B. R., Saul N., Gualtieiri L., Barakat S., Adlercreutz H.: J. Am. Diet Assoc. 94, 739 (1994).
- 47. Wang H.-J., Murphy P. A.: J. Agric. Food Chem. 42, 1674 (1994).
- 48. Mazur W., Fotsis T., Wähälä K., Ojala S., Salakka A., Adlercreutz H.: Anal. Biochem. 233, 169 (1996).
- 49. Vänttinen K., Moravcová J.: Czech J. Food Sci. *17*, 61 (1999).
- 50. Kitada Y., Ueda Y., Yamamoto M., Ishikawa M., Nakazawa H., Fujita M.: J. Chromatogr. *366*, 403 (1986).
- 51. Seo A., Morr C. V.: J. Agric. Food Chem. 32, 530 (1984).
- 52. Eldringe A. C., Kwolek W. F.: J. Agric. Food Chem. *31*, 394 (1983).
- 53. Barnes S., Peterson T. G., Cowad L.: J. Cell. Biochem. 22, 181 (1995).
- Adlercreutz H., Fotsis T., Bannwart C., Wähälä K., Mäkelä T., Brunow G., Hase T.: J. Steroid. Biochem. 24, 289 (1986).

- 55. Parkin D. M.: Eur. J. Cancer Clin. Oncol. 25, 1917 (1989).
- 56. Ziegler R. G., Hoover R. N., Like M. C.: J. Natl. Cancer Inst. 85, 1819 (1993).
- 57. Zava D. T., Duwe G.: Nutr. Cancer 27, 31 (1997).
- 58. Santell R. C., Cheng Y. C., Nair M. G., Helferich W. G.: J. Nutr. 127, 263 (1997).
- 59. Miksicek R. J.: J. Steroid. Biochem. Mol. Biol. 49, 153 (1994).
- Adlercreutz H., Fotsis T., Heikkinen R., Markkanen H., Watanabe S.: Lancet *342*, 1209 (1993).
- Kuiper G. G. J. M., Lemmen J. G., Carlsson B., Corton J. C., Safe S. H., VanDerSaag P. T., VanDerBurg B., Gustafsson J.-A.: Endocrinology *139*, 4252 (1998).
- 62. Kuiper G. G. J. M., Carlsson B., Grandien K., Enmark E., Haggblad J., Nilsson S., Gustafsson J.-A.: Endocrinology 138, 863 (1997).
- Bowers J. L., Zyulmenkov V. V., Jernigan S. C., Klinge C. M.: Endocrinology 141, 3657 (2000).
- 64. Slanina J.: Chem. Listy 94, 11 (2000).
- 65. Šmidrkal J., Filip V., Melzoch K., Hanzlíková I., Buckiová D., Křísa B.: Chem. Listy 95, 602 (2001).
- 66. Keys A., Menotti A., Aravanis C.: Prev. Med. 13, 141 (1984).
- 67. Grodstein F., Stampfer M. J., Colditz G. A., Willet W. C., Manson J. E., Joffe M., Rosner B., Fuchs C., Hankinson S. E., Hunter D. J., Hennekens C. H., Speizer F. E.: N. Engl. J. Med. 336, 1769 (1997).
- 68. Chae C. V., Ridker P. M., Manson J. E.: Thromb. Haemost. 78, 770 (1997).
- 69. Stampfer M. J., Colditz G. A., Willett W. C.: N. Engl. J. Med. 325, 756 (1991).
- 70. Gilligan D. M., Badar D. M., Panza J. A., Quyyumi A. A., Cannon III R. O.: Am. J. Cardiol. 75, 264 (1995).
- Anderson J. W., Johnstone B. M., Cook-Newell M. E.: N. Engl. J. Med. 333, 276 (1995).
- 72. Carroll K. K.: J. Am. Diet Assoc. 91, 820 (1991).
- 73. Hodgson J. M., Puddey I. B., Beilin L. J., Mori T. A., Croft K. D.: J. Nutr. 128, 728 (1998).
- 74. Gooderham M. J., Adlercreutz H., Ojala S. T., Wähälä K., Holub B. J.: J. Nutr. *126*, 2000 (1996).
- 75. Nestel P. J., Yamashita T., Sasahara T., Pomeroy S., Dart E., Komesaroff P., Owen A., Abbey H.: Arterioscler. Thromb. Vasc. Biol. *17*, 3392 (1997).
- 76. Hodgson J. M., Puddey I. B., Beilin L. J., Mori T. A.: J. Nutr. 128, 728 (1998).
- 77. Howes J. B., Sullivan D., Lai N., Nestel P. Pomeroy S., West L., Eden J. A., Howes L. G.: Atherosclerosis 152, 143 (2000).
- 78. Cassidy A., Bingham S., Setchell K.: Br. J. Nutr. 74, 587 (1995).
- Takkanen M. J., Wähälä K., Ojala S., Vihma V., Adlercreutz H.: Proc. Natl. Acad. Sci. U.S.A. 95, 3106 (1998).
- Wiseman H., O'Reilly J.: Biochem. Soc. Trans. 25, 107 (1997).
- 81. Wiseman H., O'Reilly J.: Biochem. Soc. Trans. 25, 108 (1997).
- Sato M., Ray P. S., Maulik G., Maulik N., Engelman R. M., Bertelli A. A. E., Bertelli A. D., Dipak K.: J. Cardiovasc. Pharmacol. *35*, 263 (2000).
- Tedesco I., Russo M., Russo P., Iacomino G., Russo G. L., Carraturo A., Faruolo C., Moio L., Palumbo R.: J. Nutr. Biochem. 11, 114 (2000).

- 84. Anthony M. S., Clarkson T. B., Bullock B. C., Wagner J. D.: Arterioscler. Thromb. Vasc. Biol. 17, 2524 (1997).
- 85. Lieberman E. H., Gerhard M. D., Uehata A., Walsh B. W., Selwyn A. P., Gauz P.: Ann. Intern. Med. *121*, 936 (1994).
- 86. Lamartiniere C. A., Murrill W. B., Manzolillo P. A., Zhang J.-X., Barnes S., Zhang X., Wei H., Brown N. M.: Proc. Soc. Exp. Biol. Med. 217, 358 (1998).
- Ingram O., Sanders K., Kolybaba M., Lopez D.: Lancet 350, 990 (1997).
- Adlercreutz H., Fotsis T., Bannwart C.: J. Steroid. Biochem. 25, 791 (1986).
- 89. Kolonel L. W., Hankin J. H., Nomura A. M. Y., v knize: *Nutrition and Cancer* (Hayashi Y., Nagao M., Sugimura T., Takayma S., Tomatis L., Wattenberg L. W., Wogan G. N., ed.), str. 29. Japanese Science Society Press, Tokyo 1986.
- 90. Barnes S., Peterson T. G., Coward L.: J. Cell. Biochem. 22, 181 (1995).
- Miller S. G., v knize: *Multidisciplinary Analysis of Controversies in the Management of Prostatic Cancer* (Coffey D. S., Resnick M. I., Dorr F. A., Karr J. P., ed.), str. 17. Plenum Press, New York 1988.
- 92. Severson R. K., Nomura A. M. Y., Grove J. S., Stemmerman G. N.: Cancer. Res. 49, 1857 (1989).
- 93. Adlercreutz H., Honjo H., Higashi A.: Am. J. Clin. Nutr. 54, 1093 (1991).
- 94. Adlercreutz H., Markkanen H., Watanabe S.: Lancet 342, 1029 (1993).
- 95. Morton M. S., Matos-Ferreira A., Abranches-Monteiro L., Correia R., Blacklock N., Chan P. S. F., Cheng C., Lloyd S., Wu C.-P., Griffiths K.: Cancer Lett. *114*, 145 (1997).
- 96. Morton M. S., Chan P. S. F., Cheng C., Blacklock N., Matos-Ferreira A., Abranches-Monteiro L., Correira R., Lloyd S., Griffiths K.: Prostate 32, 122 (1997).
- 97. Hempstock J., Kavanagh J. P., George N. J. R.: Br. J. Urol. 82, 560 (1998).
- 98. Haenszel W., Kurihara M., Segi M., Lee R. K. C.: J. Natl. Cancer Inst. 49, 969 (1972).
- 99. Swanson C. A., Mao B. L., Li J. Y., Lubin J. H., Yao S. X.: Inst. J. Cancer 50, 876 (1992).
- 100. Hirayama T.: Nutr. Cancer 3, 223 (1982).
- 101. You W. C., Blot W. J., Chang Y. S., Ershow A. G., Yang Z. T.: Cancer Res. 48, 3518 (1988).
- 102. Hu J., Liu Y., Yu Y., Zao T., Liu S.: Int. J. Epidemiol. 20, 362 (1991).
- 103. Hsieh C.-Y., Santell R. C., Haslam S. Z., Helferich W. G.: Cancer Res. 58, 3833 (1998).
- 104. Hilakivi-Clarke L., Cho E., Clarke R.: Oncol. Rep. *5*, 609 (1998).
- 105. McMichael-Phillips D. F., Harding C., Morton M., Roberts S. A., Howell A., Potten C. S., Bundred N. J.: Am. J. Clin. Nutr. 68, 1431 (1998).
- 106. Wang W., Peterson G., Barnes S.: Biochem. Biophys. Res. Commun. *179*, 661 (1991).
- 107. Chang C. J., Geahleen R.L.: J. Nat. Prod. 55, 1529 (1992).
- 108. Akiyama T., Ishida J., Nakagawa S., Ogawara H., Watanabe S.-I., Itoh N., Shibuya M., Fukami Y.: J. Biol. Chem. 262, 5592 (1987).
- 109. Constantinou A., Huberman E.: Proc. Soc. Exp. Biol. Med. 208, 109 (1995).

- 110. Constantinou A., Kiguchi K., Huberman E.: Cancer Res. 50, 2618 (1990).
- 111. Yanagihara K., Ito A., Toge T., Numoto M.: Cancer Res. 53, 5815 (1993).
- 112. Wang W., Liu Q., Higuchi C. M., Chen H.: Biochem. Pharmacol. 56, 189 (1998).
- 113. Markovits J., Linassier C., Fosse P., Couprie J., Pierre J.: Cancer Res. 49, 5111 (1989).
- 114. Kao Y.-C., Zhou C., Sherman M., Laughton C. A., Chen S.: Environ. Health Perspect. *106*, 85 (1998).
- 115. Kao D. C., P'eng F. K.: Chin. Med. J. 55, 209 (1995); převzato Tham D. M., Gardner C. D., Haskell W. L.: J. Clin. Endocrinol. Metab. 83, 2223 (1998).
- 116. Ettinger B.: Obstet. Gynecol. 72, 12 (1988).
- 117. Heikkinen A. M., Pariainen M., Miskanen L.: J. Clin. Endocrinol. Metab. *82*, 2476 (1998).
- 118. Kardinaal A. F. M., Morton M. S., Bruggemann-Rotgans I. E. M., van Beresteijn E. C. H.: Eur. J. Clin. Nutr. 52, 850 (1998).
- 119. Breslau N. A., Brinkley L., Hill K. D., Pak C. Y. C.: J. Clin. Endocrinol. Metab. *66*, 140 (1988).
- 120. Brandi M. L.: Bone Miner. 19, 3 (1992); převzato z cit.⁴⁰.
- 121. Lock M.: Lancet 337, 1270 (1991).
- 122. Adlercreutz H., Gorbach S., Goldin B.: Lancet *339*, 1233 (1992).
- 123. Adlercreutz H., Gorbach S., Goldin B.: Lancet *339*, 1233 (1992).
- 124. Chung T. K. H., Yip S. K., Lam P., Chang A. M. Z., Haines C. J.: Maturitas 25, 115 (1996).
- 125. Murkies A. L., Lombard C., Strauss B. J., Wilcox G., Burger H. G., Morton M. S.: Maturitas 21, 189 (1995).

- 126. Albertazzi P., Pansini F., Bottazzi M., Bonaccorsi G., De
- Aloysio D., Morton M. S.: Obstet. Gynecol. 94, 229 (1999). 127. Fotsis T., Pepper M., Adlercreutz H., Flerischmann G.,
- Hase T., Montesano R., Schweigert L.: Proc. Natl. Acad. Sci. U.S.A. *90*, 2690 (1993).
- 128. Molteni A., Brizio-Molteni L., Persky V.: J. Nutr. 125, 751 (1995).
- 129. Key T. J. A., Pike M. C.: Eur. J. Cancer Clin. Oncol. 24, 29 (1988).
- 130. Nagata C., Kabuto M., Kurisa Y., Shimizu H.: Nutr. Cancer 29, 228 (1997).
- 131. Cassidy A., Bingham S., Setchell K. D. R.: Am. J. Clin. Nutr. 60, 333 (1994).
- 132. Xu X., Duncan A. M., Kruz B. E., Kurzer M. S.: Cancer Epidemiol., Biomarkers Prev. 7, 1101 (1998).

J. Moravcová^a and T. Kleinová^b (^aDepartment of Chemistry of Natural Compounds, Institute of Chemical Technology Prague, ^bResearch Institute of Animal Production, Prague): Phytoestrogens in Nutrition – Do They Bring Benefit or Involve Risk?

Phytoestrogens are secondary metabolites of plants displaying both estrogenic and antiestrogenic activity. Moreover, they can also act through other estrogen-independent mechanisms. Soya is their main source in human nutrition. Population-based studies have suggested that consumption of a phytoestrogen-rich diet protects from civilization diseases. The evaluation of their beneficial effects is rather confusing due to individual sensitivity of humans to biological effects of phytoestrogens.

MĚŘENÍ A SYSTEMATICKÉ ZPRACOVÁNÍ NĚKTERÝCH FYZIKÁLNĚ-CHEMICKÝCH VLASTNOSTÍ ORGANICKÝCH POLUTANTŮ

VLASTIMIL RŮŽIČKA, KVĚTOSLAV RŮŽIČKA a MILAN ZÁBRANSKÝ

Ústav fyzikální chemie, Vysoká škola chemicko-technologická v Praze, Technická 5, 166 28 Praha 6 e-mail: vlastimil.ruzicka@vscht.cz

Došlo dne 22.I.2002

Klíčová slova: organické polutanty, tlak nasycených par, tepelná kapacita, osud látek v životním prostředí

Obsah

- 1. Úvod
- 2. Studované látky
- 3. Použitá zařízení
 - 3.1. Měření tlaku nasycených par
 - 3.2. Měření tepelných kapacit a entalpií tání
- Zpracování dat
 - 4.1. Literární rešerše a vlastní měření
 - 4.2. Simultánní korelace tlaku nasycených par a termálních dat
- 4.3. Výsledky zpracování dat, doporučená data5. Závěr

1. Úvod

V rámci celosvětového trendu ochrany životního prostředí jsme se zaměřili na přípravu doporučených dat pro některé fyzikálně-chemické vlastnosti organických polutantů. Z řady fyzikálně-chemických vlastností, které řídí osud látek v životním prostředí, jsme zvolili tlak nasycených par nad tuhou a kapalnou fází. Ten určuje distribuci látky mezi vodu a vzduch, dvě ze čtyř nejdůležitějších částí, na něž se životní prostředí v obecných představách dělí.

V otevřené, tedy veřejně přístupné literatuře, je k dispozici několik datových kompendií, databází a monografií doprovázených sbírkami dat, které uvádějí údaje tlaku nasycených par nejčastěji ve formě parametrů korelační rovnice pro několik tisíc látek. Menší část z uvedených děl obsahuje zhodnocená data, která představují jedinečný údaj obvykle vzniklý kritickým rozborem a posouzením několika z literatury převzatých údajů. Jiná obsahují pouhý výčet hodnot převzatých většinou z původních časopiseckých prací. Výčet údajů postrádá jakékoli kritické zhodnocení, což výrazně omezuje využití; v řadě případů se uvedená data významně liší, a bez hlubokých znalostí a zkušeností a případně bez pomoci dalších termodynamických údajů je obtížné vybrat správnou hodnotu. Typickým představitelem této skupiny děl jsou dvě datová kompendia velmi často využívaná a citovaná specialisty na problematiku životního prostředí: Howard¹ a Mackay a spol.²

Na příkladu 1,4-dichlorbenzenu ukážeme, jak rozdílné údaje o tlaku nasycených par je možné nalézt ve dvou zmíněných datových kompendiích. Zatímco Handbook of Environmental Fate and Exposure Data for Organic Chemicals¹ uvádí při teplotě 25 °C jedinou hodnotu 1,76 torr (235 Pa), Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals² udává 15 vzájemně značně odlišných hodnot v rozmezí od 48 do 266 Pa. Roháč a spol.³ uvádí hodnotu 136 Pa získanou simultánním zpracováním vlastních a literárních dat tlaku nasycených par a termálních veličin. Autoři ani jednoho z obou citovaných kompendií^{1,2} neuvádějí žádný z přímých experimentálních údajů tlaku nasycených par, které ve svém zpracování použili Roháč a spol.³ Data tlaku nasycených par z kompendia Mackay a spol.² jsou uvedena v tabulce I.

Pro přípravu dat jsme zvolili cestu experimentálního stanovení hodnot tlaku nasycených par a některých termálních veličin s využitím adekvátních metodik a zpracování vlastních a z literatury převzatých dat pomocí exaktních vztahů. Výsledkem jsou pak doporučená data uvádějící jediný údaj doprovázený zhodnocením jeho kvality vyjádřené obvykle relativní nebo absolutní chybou údaje.

2. Studované látky

Při výběru studovaných látek jsme se řídili aktuální potřebností dat. Studované látky byly vybírány z několika seznamů prioritních kontaminantů^{4–7}. Při výběru jsme dále zjišťovali, jaká data jsou pro látky v literatuře dostupná, jaká je kvalita dat, jaký je vzájemný rozptyl dat v případech, kdy byla k dispozici data z různých literárních pramenů. V neposlední řadě jsme posuzovali také dostupnost látek v množství dostatečném pro naše experimenty. Všechny námi dosud studované látky jsou syntetickými produkty a do životního prostředí se dostávají vlivem lidské činnosti. Dosud byly studovány tyto skupiny látek: chlorbenzeny (1,2-, 1,3-, 1,4-dichlorbenzen, 1,2,3-, 1,2,4-, 1,3,5-trichlorbenzen, pentachlorbenzen), estery kyseliny ftalové (dimethyl, diethyl, dibutyl, benzylbutyl, bis(2--ethylhexyl)), monochlorfenoly (2-, 3-, 4-chlorfenol) a methylaniliny (2-, 3-, 4-methylanilin).

3. Použitá zařízení

3.1. Měření tlaku nasycených par

Tlak nasycených par byl měřen na třech různých pracovištích třemi různými metodami: statickou metodou v rozmezí tlaků 1 Pa až 56 kPa, dynamickou metodou v tlakovém intervalu od 3 do 105 kPa a Knudsenovou efuzní metodou v tlakovém intervalu od 0,1 do 1 Pa. Uvedené metody jsou komplementární v měřeném tlakovém rozmezí.

Pro měření statickou metodou byla použita aparatura postavená na Ústavu fyzikální chemie VŠCHT Praha^{8.9}, nedávno výrazně modernizovaná^{10,11}, pro jejíž konstrukci sloužila jaTabulka I

Tlak nasycených par tuhého 1,4-dichlorbenzenu (teplota tání ≅ 53 °C) při 25 °C, jak jej uvádí Mackay	a spol."
--	----------

Tlak nasy- cených par	Získáno	Lit.		
90,2	extrapolací	Weast, ed.: Handbook of Chemistry and Physics. 53th ed., 1972-73.		
235	citováno	Hine, Mookerjee: J. Org. Chem. 40, 292 (1975).		
53,3	citováno	Haque: Dynamics, Exposure and Hazard Assessment of Toxic Chemicals, str. 47. Michigan 1980.		
133	citováno	Neely: Dynamics, Exposure and Hazard Assessment of Toxic Chemicals, str. 287. Michigan 1980.		
90	citováno	Mackay a spol.: Environ. Sci. Technol. 16, 645 (1982).		
125,6	odhadnuto	Mackay a spol.: Environ. Sci. Technol. 16, 645 (1982).		
134	odhadnuto	Arbuckle: Environ. Sci. Technol. 17, 537 (1983).		
128	extrapolací	Boublik a spol.: Dynamics, Exposure and Hazard Assessment of Toxic Chemicals,		
	Antoineovy rovnice	str. 379., 1984.		
243	extrapolací Antoineovy rovnice	Dean, ed.: Lange's Handbook of Chemistry, 13th ed. New York 1985.		
86,7	"sycení plynem" ^a	Chiou, Shoup: Environ. Sci. Technol. 19, 1196 (1985).		
47,5	citováno	Mackay a spol.: Chemosphere 14, 335 (1985).		
235	citováno	Riddick a spol.: Organic Solvents, 4 th ed. New York 1986.		
140	extrapolací Antoineovy rovnice	Stephenson, Malanowski: Handbook of the Thermodynamics of Organic Compounds. New York 1987.		
266	vybráno	Suntio a spol.: Rev. Environ. Contam. Toxicol. 103, 1 (1988).		
173	vybráno	Suntio a spol.: Chemosphere 17, 1249 (1988).		

^a Z citované práce zabývající se sorpcí par organických látek na půdách není patrné, odkud byla hodnota tlaku nasycených par získána; zřejmě převzata z *Handbook of Chemistry and Physics* (ed. Weast)

ko vzor statická aparatura v laboratoři prof. Jose na univerzitě Claude Bernarda (UCB) v Lyonu (Francie)^{12,13}. Statická aparatura na UCB dovoluje měření až do tlaků 200 kPa a byla na ní provedena rovněž některá naše měření. Aparatura na VŠCHT Praha je určena pro měření v teplotním intervalu od –50 do 250 °C a v tlakovém rozmezí od 1 Pa do 101 kPa, ale vzhledem k přesnosti měření teploty je využívána pouze do tlaku zhruba 1 kPa. Chyba v měření teploty $\Delta T = 0,03$ K a chyba v měření tlaku $\Delta p = 0,5$ % pro tlaky vyšší než 1300 Pa, $\Delta p = 1,5$ % v rozmezí tlaků 100 až 1300 Pa a $\Delta p \ge 2$ % pro tlaky pod 100 Pa (cit.⁹).

Měření na dynamické aparatuře metodou komparativní ebuliometrie¹⁴ byla realizována na pracovišti Ústavu chemických procesů AV ČR (dále ÚCHP). Aparatura pracuje v teplotním intervalu od 30 do 300 °C a v tlakovém intervalu od 3 do 105 kPas chybou měření teploty $\Delta T = 0.01$ K a tlaku $\Delta p = 0.05$ %.

Knudsenova efuzní aparatura¹⁵ na univerzitě Porto (UP) v Portu (Portugalsko) byla využita zatím pouze pro měření několika organických látek, které jsou používány pro nepřímou kalibraci tlakových čidel ve statické aparatuře¹⁶. Knudsenova efuzní aparatura na UP umožňuje měření v rozmezí teplot od 20 do 100 °C a v tlakovém intervalu od 0,1 do 1 Pa s chybou měření $\Delta T = 0,01$ K, $\Delta p = 2$ %.

3.2. Měření tepelných kapacit a entalpií tání

Tepelné kapacity a entalpie tání čistých látek v kondenzovaném stavu byly dosud měřeny na třech kalorimetrech francouzské firmy SETARAM. Kalorimetr C-80 SETARAM umístěný na Ústavu fyzikální chemie VŠCHT umožňuje měření v teplotním intervalu od 30 do 300 °C. Kalorimetr¹⁷ pracuje na principu měření tepelného toku termočlánkovou baterií mezi dvěma kalorimetrickými nádobkami, referenční a měrnou, o vnitřním objemu každé z cel 9,5 cm³. Typické měření se provádí tzv. "krokovou metodou" spočívající v měření tepelného toku při zvýšení teploty o 5 až 10 K s rychlostí ohřevu 0,2 K.min⁻¹. Relativní chyba měření je menší než 1 %.

Tepelně-vodivostní kalorimetr Micro DSC II SETARAM pracuje na stejném principu jako výše uvedený kalorimetr C-80, experimenty lze provádět v intervalu od –20 do 120 °C, s celami o vnitřním objemu cca 1 cm³. Relativní chyba měření je menší než 0,5 %. Měření byla prováděna na Technické univerzitě Bergakademie Freiberg (SRN), za použití metody diskontinuálního náhřevu¹⁸.

Proudově kompenzovaný kalorimetr DSC 141 SETARAM, pracující ve velmi širokém teplotním rozsahu, byl využit pro měření tepelných kapacit v tuhé fázi v rozsahu od 133 K do laboratorní teploty. Měření se provádí v hliníkovém kelímku obsahujícím cca 100 mg látky. Protože kelímek není možné dokonale utěsnit, jsou měření tepelných kapacit vhodná jen pro látky, které mají v oboru měřených teplot velmi nízký tlak nasycených par. Měření¹⁸ byla prováděna na Technické univerzitě Bergakademie Freiberg (SRN), s rychlostí ohřevu 4 K.min⁻¹. Vzhledem k dosavadním malým zkušenostem a nedokončeným testům na využití kalorimetru DSC 141 SETARAM pro měření tepelných kapacit byla chyba měření odhadnuta na 3 % v rozmezí teplot od 203 do 293 K a na 5 % v rozmezí teplot od 133 do 203 K.

4. Zpracování dat

4.1. Literární rešerše a vlastní měření

Pro každou látku byl před zahájením experimentů připraven přehled dostupných experimentálních dat. Jako hlavní zdroj dat pro tlak nasycených par čistých látek sloužily monografie Dykyje a spol.^{19,20}, Boublíka a spol.²¹ a průběžně aktualizovaná datová kompilace TRC Tables^{22,23}. Takto získaný přehled byl ještě doplněn o rešerši z Chemical Abstracts.

Monografie Zábranského a spol.²⁴ a její aktualizace²⁵ byly kompletním zdrojem údajů pro tepelné kapacity čistých látek – kapalin. Tepelné kapacity tuhých látek byly převzaty jednak z vlastní databáze CDATA vyvinuté v Ústavu fyzikální chemie (cit.²⁶), jednak z původních článků. Potřeba nových údajů byla pak posouzena z kriticky zhodnocených literárních dat.

Monografie Majera a Svobody²⁷ s kriticky vybranými údaji pro takřka 800 látek byla hlavním zdrojem dat o výparné entalpii; data z monografie byla doplněna o aktuální údaje z průběžně prováděné rešerše²⁸ stejně tak jako sublimační entalpie.

Tepelné kapacity čistých látek ve stavu ideálního plynu byly získány převážně z monografie Frenkela a spol.²⁹, ve které jsou uvedeny parametry korelační rovnice pro zhruba 3000 látek. Pro několik látek neuvedených ve Frenkelově monografii byly tepelné kapacity ve stavu ideálního plynu odhadnuty³⁰.

4.2. Simultánní korelace tlaku nasycených par a termálních dat

Po provedených experimentech byla vlastní data spolu s daty převzatými z literatury zpracována metodou simultánní korelace tlaku nasycených par a termálních dat: výparné entalpie a rozdíly tepelných kapacit nasycené páry a nasycené kapaliny (pro rovnováhu kapalina-pára), případně sublimační entalpie a rozdíly tepelných kapacit nasycené páry a tuhé látky (pro rovnováhu tuhá látka-pára). Cílem simultánní korelace je určit tlak nasycených par vysokovroucích organických látek v okolí teplot zajímavých z hlediska řešení problematiky životního prostředí, tedy zhruba od -40 do 50 °C. K tomu se využívají exaktní vztahy mezi některými termodynamickými veličinami (odvození viz např. Růžička a Majer³¹). Metoda simultánní korelace umožňuje také posoudit, zda jsou tlaky nasycených par a odpovídající termální veličiny vzájemně termodynamicky konzistentní. Pak je možné provést kritické zhodnocení dostupných experimentálních dat, vyloučit data zjevně zatížená systematickými chybami a vybrat doporučená data představující objektivně nejpřesnější a nejsprávnější údaje o tlaku nasycených par (resp. sublimačním tlaku) a výparné (resp. sublimační) entalpii. Pro aplikaci metody simultánní korelace jsou potřebná kromě nejčastěji měřených střednětlakých hodnot tlaku nasycených par obvykle dobře dostupná termální data, výparné nebo sublimační entalpie a tepelné kapacity kapaliny, tuhé látky a ideálního plynu.

Byly popsány vizuální testy pro posouzení nahodilých a systematických chyb experimentálních dat tlaku nasycených par. Jsou to testy podle Aima (viz Nielsen³²) nebo podle Oonka a spol.³³, ve kterých se transformují data tlaku nasycených par tak, aby byl zvýrazněn rozdíl mezi subjektivně zvolenou "správnou křivkou" a jednotlivými experimentálními body. Cílem takového testu je oddělit správná experimentální data, která leží na vyhlazené křivce nebo v její blízkosti, od ostatních údajů tlaku nasycených par, které jsou zřejmě zatíženy systematickými nebo nahodilými chybami. Posouzení správnosti dat a vyloučení chybných dat je subjektivní; na rozdíl od metody simultánní korelace a dalších v předchozím odstavci zmíněných postupů není založeno na exaktních vztazích.

V další části je stručně popsána námi používaná metoda simultánní korelace. Její podrobné odvození je uvedeno v práci³¹. Zavedeme-li pro podíl výparné entalpie $\Delta H_{výp}$ (resp. sublimační entalpie) a rozdílu kompresibilitních faktorů páry a kapaliny (resp. tuhé látky) $\Delta z_{výp}$ veličinu $\Delta H' = \Delta H_{výp}/\Delta z_{výp}$ a pro teplotní derivaci $\Delta H'$ podél křivky nasycení veličinu $\Delta C'$ = $(d\Delta H'/dT)_{nas}$ pak pro ně lze odvodit vztahy:

$$\Delta H' = RT^2 (\mathrm{d} \ln p^{\varnothing} / \mathrm{d} T)_{\mathrm{nas}} \tag{1}$$

$$\Delta C' = 2RT \left(d \ln p^{\varnothing} / dT \right)_{\text{nas}} + RT^2 \left(d^2 \ln p^{\varnothing} / dT^2 \right)_{\text{nas}}$$
(2)

Pro veličiny $\Delta H'$ a $\Delta C'$ je možné odvodit také následující vztahy:

$$\Delta H' = \frac{\Delta H_{\rm výp}}{1 + \frac{p^{\varnothing}}{RT} \left(B - V^{(1)} \right)} \tag{3}$$

$$\Delta C' = \Delta C_{\text{výp}} - Tp^{\varnothing} \frac{\mathrm{d}^2 B}{\mathrm{d}T^2} - 2T \frac{d(B - V^{(1)})}{\mathrm{d}t} \left(\frac{\mathrm{d}p}{\mathrm{d}T}\right)_{\text{nas}} - T(B - V^{(1)}) \left(\frac{\mathrm{d}^2 p}{\mathrm{d}T^2}\right)_{\text{nas}}$$
(4)

kde $\Delta C_{výp} = C_p^o - C_p^l$ je rozdíl tepelné kapacity ideálního plynu a tepelné kapacity kapaliny (pro rovnováhu kapalina–pára), případně tepelné kapacity tuhé látky (pro rovnováhu tuhá látka–pára). Rovnice (3) a (4) platí za předpokladu, že stavové chování plynné fáze je pod normální teplotou varu možné popsat s dostatečnou přesností pomocí viriální stavové rovnice s druhým viriálním koeficientem *B*.

Zvolíme-li vhodnou korelační rovnici pro popis závislosti tlaku nasycených par na teplotě, můžeme veličiny ΔH 'a ΔC ' vypočítat z této rovnice pomocí vztahů (1) a (2). Veličiny ΔH 'a ΔC ' lze také vypočítat z termálních údajů a dat o tlaku nasycených par podle vztahů (3) a (4). Můžeme tedy simultánně korelovat tlak nasycených par (resp. sublimační tlak par), výparnou entalpii (resp. sublimační entalpii) a rozdíl $\Delta C_{výp}$. Výsledkem takové korelace jsou parametry zvolené korelační rovnice pro závislost tlaku nasycených par na teplotě. Parametry takové rovnice jsou získány minimalizací objektivní funkce S, která je definována jako:

$$S = \sum_{i=1}^{t} \frac{\left(\ln p^{\varnothing \exp} - \ln p^{\varnothing \operatorname{vyp}}\right)_{i}^{2}}{\sigma_{i}^{2} \ln p^{\varnothing}} + K_{H}^{2} \sum_{j=1}^{u} \frac{\left(\Delta H^{\operatorname{exp}} - \Delta H^{\operatorname{vyp}}\right)_{j}^{2}}{\sigma_{j}^{2} \Delta H^{2}} + K_{C}^{2} \sum_{k=1}^{v} \frac{\left(\Delta C^{\operatorname{exp}} - \Delta C^{\operatorname{vyp}}\right)_{k}^{2}}{\sigma_{k}^{2} \Delta C^{2}}$$
(5)

Tabulka II

Přehled měření tlaku nasycených par a tepelných kapacit studovaných látek na jednotlivých pracovištích

Látka		Tlak nasycených par ^a		Tepelná kapacita ^a	
	VŠCHT	UCB Lyon	ÚCHP AV ČR	VŠCHT	TU BAF
1,2-Dichlorbenzen		[38]	[39]	[3]	
1,3-Dichlorbenzen		[38]	[39]	[3]	
1,4-Dichlorbenzen		[38]	[39]	[3]	
1,2,3-Trichlorbenzen		[38]		[3]	
1,2,4-Trichlorbenzen			[39]	[3]	
1,3,5-Trichlorbenzen		[38]		[3]	
Pentachlorbenzen		[38]		[3]	
Dimethylftalát	[17]	[17]	[17]	[17]	[17]
Diethylftalát	[9]	[9]	[9]	[40]	[40]
Dibutylftalát	[9]	[9]		[40]	
Benzylbutylftalát	[9]			[40]	
Bis(2-ethylhexyl)ftalát	[9]			[40]	
2-Chlorfenol		[9]	[9]		[41]
3-Chlorfenol	[9]				[41]
4-Chlorfenol	[9]				[41]
2-Methylanilin	[9]			[18]	[18]
3-Methylanilin	[9]			[18]	[18]
4-Methylanilin	[9]			[18]	[18]

^a Čísla v hranatých závorkách odpovídají příslušnému literárnímu odkazu

Pro závislost tlaku nasycených par na teplotě byla pro svou flexibilitu vybrána na základě rozsáhlých testů³⁴ tříparametrová Coxova rovnice se dvěma nastavitelnými parametry T_0 a p_0 (tyto zvolené parametry charakterizují referenční bod, nejčastěji trojný bod):

$$\ln\left(\frac{p^{\varnothing}}{p_0}\right) = \left(1 - \frac{T_0}{T}\right) \exp\left(A_0 + A_1 T + A_2 T^2\right) \tag{6}$$

4.3. Výsledky zpracování dat, doporučená data

V tabulce II je uveden přehled námi změřených nových experimentálních dat s udáním literárního odkazu na jejich publikaci. Ve většině v tabulce uvedených prací jsou doporučená data tlaku nasycených par uvedena ve formě parametrů Coxovy rovnice (*6*), v tabelární formě jsou uvedeny výparné nebo sublimační entalpie většinou při teplotě 25 °C a při teplotě trojného bodu. Z parametrů Coxovy rovnice je možné vypočítat výparnou nebo sublimační entalpii při libovolné teplotě v intervalu platnosti s použitím rovnic uvedených např. v práci³¹.

Obr. 1 udává teplotní rozsahy dat převzatých z literatury a dat námi naměřených na výše uvedených pracovištích. Po prohlédnutí tohoto obrázku si čtenář položí logickou otázku: proč autoři této práce měřili tam, kde byla již v literatuře data k dispozici, někdy dokonce i v širším teplotním intervalu, než ve kterém byla nová měření provedena. Odpověď lze nalézt na obr. 2. Řada v literatuře publikovaných dat tlaku nasyce-

Obr. 1. **Porovnání rozsahu teplot měření u nových a literárních experimentálních údajů**; ■ nová data tlaku nasycených par, □ literární data tlaku nasycených par, □ nová data tepelných kapacit, □ literární data tepelných kapacit

Obr. 2. Odchylkový graf tlaků nasycených par dimethylesteru kyseliny ftalové, ∇ 37Gar/Bre, × 49Bru/She, ▼ 64Sch, + 85How/ Ban, O ÚCHP, ♦ 48Sma/Sma, ♦ 59Ole, * 82Xin/Hua, ● Lyon, - 98Joh (37Gar/Bre = Gardner G. □ VŠCHT, 92Dau/Dan, -S., Brewer J. E.: Ind. Eng. Chem. 29, 179 (1937); 48Sma/Sma = Small P. A., Small K. W.: Cowley. P. Trans. Faraday. Soc. 44, 810 (1948); 49Bru/She = Bruner W. M., Sherwood L. T. J.: Ind. Eng. Chem. 41, 1653 (1949); 59Ole/Mar = Olevskii V. M., Martynenko R. L., Pogodina M. O., Kuzmina N. V., Sokolova T. K.: Trudy GIAP 10, 93 (1959); 64Sch = Schröder E.: Plaste Kautsch 11, 205 (1964); 82Xin/ Hua = Xing Y. D., Huang N. Z.: J. Org. Chem. 47, 140 (1982); 85How/Ban = Howard P. H., Banerjee S., Robillard K. A.: Environ. Toxicol. Chem. 4, 653 (1985); 92Dau/Dan = Daubert T. E., Danner R. P.: Physical and Thermodynamic Properties of Pure Compounds: data compilation. Hemisphere, Bristol (PA) 1992; 98Joh = Johns A.: soukromé sdělení; Lyon = data ze statické aparatury UCB; ÚCHP = data z dynamické aparatury ÚCHP AV ČR; VŠCHT = data ze statické aparatury VŠCHT Praha)

ných par je zatížena velkou chybou a data nejsou konzistentní s termálními veličinami. Výjimkou jsou data 2-methylanilinu, jehož měření tlaku nasycených par a tepelných kapacit v NI-PER, Bartlesville (USA) (cit.³⁵) byla provedena ve velkém teplotním intervalu a s velmi dobrou přesností. Naše měření této látky byla uskutečněna pro porovnání a ověření přesnosti našich údajů.

5. Závěr

Pro řadu látek zařazených legislativními autoritami mezi sledované prioritní polutanty buď data tlaku nasycených par chybí, nebo se různá v literatuře publikovaná měření navzájem výrazně liší. Chybějící data pro organické polutanty, což jsou vesměs vysokovroucí látky, je nezbytné doplnit experimentálním stanovením, protože odhadové metody v oboru nízkých tlaků nasycených par většinou selhávají. Publikovaná data, často vzájemně značně odlišná i v rámci experimentálních chyb použitých metodik, je potřebné zpracovat za použití exaktních termodynamických vztahů dovolujících data objektivně posoudit.

Pro experimenty je nutné volit adekvátní metodiky. V oboru nízkých tlaků poskytují nejpřesnější data tlaku nasycených par metody statická a Knudsenova efuzní, zatímco výsledky saturačních a především chromatografických metod bývají zatíženy velkými systematickými chybami. Experimentální kalorimetrie je v dnešní době založena především na využití komerčních přístrojů. Získání věrohodných dat z takových přístrojů vyžaduje, aby byly periodicky kalibrovány³⁶.

Tato práce vznikla za finanční podpory grantu č. CB MSM 223400008. Autoři děkují svým spolupracovníkům K. Aimovi, M. Čenskému, P. Dudkové, P. Chuchvalcovi, M. Lipovské, M. Poledníčkovi a V. Roháčovi, bez nichž by tato práce nemohla vzniknout.

LITERATURA

- Howard P. H.: Handbook of Environmental Fate and Exposure Data for Organic Chemicals, sv. I–V. Lewis Publishers, Chelsea (Michigan) 1990.
- Mackay D., Shiu W. Y., Ma K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals. I. Monoaromatic Hydrocarbons, Chlorobenzenes, and PCBs. Lewis Publishers, Chelsea (Michigan) 1992.
- Roháč V., Růžička V., Růžička K., Poledníček M., Aim K., Jose J., Zábranský M.: Fluid Phase Equilib. 157, 121 (1999).
- Soniassy R., Sandra P., Schlett C.: Water Analysis: Organic Micropollutants, HP Part No. 5962-6216E. Hewlett-Packard, Palo Alto 1994.
- US EPA: Clean Water Act List of Hazardous Substances (Acronym: CWA 311), Clean Water Act Section 311(b) (2)(A). US EPA, Washington, D.C. 1997.
- US EPA: *Hazardous Air Pollutants* (Acronym: CAA 112B), Clean Air Act, Section 112(b)(1). US EPA, Washington, D.C. 2000.
- Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. EC, Brussels 1998.
- Poledníček M.: *Dizertační práce*. Institute of Chemical Technology, Prague and Université B. Pascal, Clermont--Ferrand 2000.
- 9. Roháč V.: Dizertační práce. VŠCHT Praha 2001.
- Fulem M., Růžička K., Růžička, V., Šimeček, T., Melichar, K., Pangrac, J., Hulicius, E.: 53. zjazd chemických spoločností, Banská Bystrica, 3.–6. september 2001, poster č. D-Po13.
- Fulem, M., Růžička K., Růžička V., Šimeček T., Melichar K., Pangrac J., Hulicius E.: *Termodynamika 2001*, *Brejlov*, 13.–14. září 2001, sborník (ISBN 80-86238-17--2). VŠCHT a ČSCH, Praha 2001.
- Kasehgari H., Mokbel I., Viton C., Jose J.: Fluid Phase Equilib. 87, 133 (1993).
- Sasse K., Jose J., Merlin J. C.: Fluid Phase Equilib. 42, 287 (1988).
- 14. Aim K.: J. Chem. Thermodyn. 26, 977 (1994).
- 15. Ribeiro Da Silva M. A. V., Monte M. J. S.: Thermochim. Acta 171, 169 (1990).
- Lipovská M., Dudková P., Ribeiro Da Silva M. A. V., Monte M. J. S., Růžička V., Růžička K.: 53. zjazd chemických spoločností, Banská Bystrica, 3.–6. september 2001, poster č. D-Po12.
- Roháč V., Musgrove J. E., Růžička K., Růžička V., Zábranský M., Aim K.: J. Chem. Thermodyn. 31, 971 (1999).

- Čenský M., Lipovská M., Schmidt H.-G., Růžička V., Wolf G.: J. Therm. Anal. Cal. 63, 879 (2001).
- 19. Dykyj J., Repáš M.: *Tlak nasýtenej pary organických zlúčenín*. Veda, Bratislava 1979.
- 20. Dykyj J., Repáš M., Svoboda J.: *Tlak nasýtenej pary* organických zlúčenín. Veda, Bratislava 1984.
- 21. Boublík T., Fried V., Hála E.: *The Vapour Pressures of Pure Substances*. Elsevier, Amsterdam 1984.
- 22. TRC Thermodynamic Tables. Hydrocarbons. TRC College Station, Texas 1994.
- 23. TRC Thermodynamic Tables. Non-Hydrocarbons. TRC College Station, Texas 1994.
- Zábranský M., Růžička V., Jr., Majer V., Domalski E. S.: *Heat Capacity of Liquids. Critical Review and Recommended Values*, sv. I a II (J. Phys. Chem. Ref. Data, Monograph No. 6). American Chemical Society, Washington, D.C. 1996.
- Zábranský M., Růžička V., Jr., Domalski E. S.: J. Phys. Chem. Ref. Data 30, 1199 (2001).
- Růžička K.: CDATA. Databanka termodynamických a transportních vlastností pro chemii a chemické inženýrství (Databank of Thermodynamic and Transport Properties for Chemistry and Engineering). 1.012. FIZ Chemie GmbH, Berlin 1995.
- 27. Majer V., Svoboda V.: Enthalpies of Vaporization of Organic Compounds, Critical Review and Data Compilation. Blackwell, Oxford 1985.
- Růžička V.: Aufbau einer Datenfaktenbank Reinstoffdaten, Report No. 08 G35 26 3. Bundesministerium für Forschung und Technologie, Bonn 1999.
- Frenkel M. L., Kabo G. J., Marsh K. N., Roganov G. N., Wilhoit R. C.: *Thermodynamics of Organic Compounds in the Gas State*. TRC College Station, Texas 1994.
- Růžička V., Šobr J., Novák J. P., Bureš M., Cibulka I., Růžička K., Matouš J.: Odhadové metody pro fyzikálněchemické vlastnosti tekutin. Aplikace v technologii a chemii životního prostředí (skripta). VŠCHT, Praha 1996.
- 31. Růžička K., Majer V.: J. Phys. Chem. Ref. Data 23, 1 (1994).
- 32. Nielsen M. M.: *Diplomová práce*. Norwegian University of Science and Technology, Trondheim 1996.
- Oonk H. A. J., van der Linde P. R., Hiunink J., Blok J. G.: J. Chem. Thermodyn. *30*, 897 (1998).

- 34. Růžička K., Majer V.: AIChE J. 42, 1723 (1996).
- Steele W. V., Chirico R. D., Nguyen A., Knipmeyer S. E.: J. Chem. Thermodyn. 26, 515 (1994).
- Růžička K., Krakovský I.: *Termodynamika 2001, Brejlov, 13.–14. září 2001*, sborník (ISBN 80-86238-17-2).
 VŠCHT a ČSCH, Praha 2001.
- Mackay D., Shiu W. Y., Ma K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals. II. Polynuclear Aromatic Hydrocarbons, Polychlorinated Dioxins, and Dibenzofurans. Lewis Publishers, Chelsea (Michigan) 1992.
- Poledníček M., Guetachew T., Jose J., Růžička V., Roháč V., Zábranský M.: ELDATA: Int. Electron. J. Phys.– Chem. Data 2, 41 (1996).
- Roháč V., Růžička V., Růžička K., Aim K.: J. Chem. Eng. Data 43, 770 (1998).
- Roháč V., Fulem M., Schmidt H.-G., Růžička V., Růžička K., Wolf G.: J. Therm. Anal. Calorim., v tisku (2002).
- Lipovská M., Schmidt H.-G., Roháč V., Růžička V., Wolf G., Zábranský M.: J. Therm. Anal. Calorim., v tisku (2002).

V. Růžička, K. Růžička, and M. Zábranský (Department of Physical Chemistry, Institute of Chemical Technology, Prague): Measurement and Systematic Processing of Some Physicochemical Properties of Organic Pollutants

Vapour pressure is one of the most important physicochemical properties that control the fate of pollutants in environment. A survey of activities aimed at obtaining recommended data on vapour pressure for several families of pollutants is presented. Measurements of vapour pressure, heat capacities and enthalpies of fusion were carried out using the following techniques: the static method, comparative ebulliometry, and the Knudsen effusion method for vapour pressure and three different Setaram calorimeters for heat capacities and enthalpies of fusion. The experimental data obtained were combined with literature data, critically assessed and correlated using exact thermodynamic relationships to generate the recommended vapour pressure valid in an environmentally relevant temperature range.

POLYMERIZACE A KOPOLYMERIZACE HEXANO-6-LAKTAMU

JIŘÍ BROŽEK, IRENA PROKOPOVÁ a JAN RODA

Ústav polymerů, Vysoká škola chemicko-technologická v Praze, Technická 5, 166 28 Praha 6 e-mail: jiri.brozek@vscht.cz, irena.prokopova@vscht.cz, jan. roda@vscht.cz

Došlo dne 31.I.2002

Klíčová slova: hexano-6-laktam, polymerizace, kopolymerizace, blokové kopolymery, iniciátory, cyklické oligomery

Obsah

- 1. Úvod
- 2. Neaktivovaná aniontová polymerizace hexano-6-laktamu
- 3. Kopolymerizace hexano-6-laktamu
- 4. Cyklické oligomery hexano-6-laktamu
- 5. Závěr

1. Úvod

Hexano-6-laktam, tradičně označovaný jako ε-kaprolaktam (KL), lze převést v polymer hydrolytickým, aniontovým i kationtovým mechanismem. Hydrolytická polymerizace KL se stala již v roce 1939 průmyslově využívanou technologií pro výrobu polyamidu 6 (PA 6). Později, byť ve výrazně menším měřítku, se začala využívat i aniontová polymerizace KL ve formách, a to především pro výrobu masivních odlitků, často i komplikovaných tvarů. Podrobnému studiu mechanismu otevírání laktamových cyklů, v naprosté většině sedmičlenného KL, v iniciační a růstové reakci polymerizace, vedlejším reakcím, které doprovázejí růstovou reakci, i kinetickým aspektům polymerizace byla věnována dlouhá řada prací, z nichž nejvýznamnější jsou shrnuty v monografiích¹⁻⁴.

Na VŠCHT v Praze má studium problematiky polymerizace a kopolymerizace laktamů padesátiletou tradici. Jeho začátky jsou spojeny se jménem zakladatele Ústavu (dříve katedry) polymerů VŠCHT v Praze prof. O. Wichterla.

V posledním desetiletí se v Ústavu polymerů VŠCHT v Praze soustředil zájem na poli přípravy a charakterizace polyamidů zejména na studium méně obvyklých iniciačních systémů polymerizace KL, na přípravu blokových kopolymerů s poly(ε-kaprolaktamovými) a elastomerními bloky a na studium tvorby cyklických oligomerů KL a jejich vlastnosti.

2. Neaktivovaná aniontová polymerizace hexano-6-laktamu

Na růstové reakci aniontové polymerizace laktamů se podílí aniontově aktivovaný monomer (laktamát) a N-acylo-

vaný laktam⁴, tvořící neiontová růstová centra. Obě složky (iniciátor a aktivátor) mohou být dodávány do polymerizačního systému buď přímo, nebo ve formě vhodného prekurzoru. [Terminologická poznámka: Bazická složka produkující aniontově aktivovaný laktam, zde nazývaná iniciátor, bývá někdy v literatuře označována jako katalyzátor a složka, která je růstovým centrem nebo jeho prekurzorem jako iniciátor (zde aktivátor).]

Kombinace laktamátu a aktivátoru zaručuje vysokou rychlost polymerizace - tato polymerizace bývá označována jako aktivovaná. Při iniciaci samotným laktamátem, tzv. neaktivované polymerizaci, se aktivátor (N-acyllaktam) vytváří v polymerizačním systému pomalou N-acylací aniontově aktivovaného laktamu neutrálním laktamem (disproporcionační reakce). Klíčovou složkou polymerizačního systému je iniciátor, který významně ovlivňuje průběh polymerizačního procesu i vlastnosti konečného produktu. K iniciaci aniontové polymerizace KL se využívají většinou alkalické laktamáty, nejčastěji sodná či draselná sůl KL. Méně rozšířenými iniciátory jsou hořečnaté soli odvozené od KL; ε-kaprolaktammagnesiumbromid (KLMgBr) se však stal důležitou složkou iniciačních systémů pro přípravu blokových kopolymerů s bloky poly(ɛ-kaprolaktamu) a polyetheru technologií "reaction injection moulding" (RIM).

Zatímco různým aspektům aktivované aniontové polymerizace KL byla v minulosti i z praktických důvodů věnována značná pozornost, neaktivovaná polymerizace zůstala stranou zájmu. Touto polymerizací s nízkou koncentrací růstových center jsme se začali detailněji zabývat především proto, že dovoluje citlivé testování aktivity a kvality použitých iniciátorů a stejně tak i testování vlivu nečistot včetně vody na průběh aniontové polymerizace.

Z porovnání průběhu neaktivované aniontové polymerizace KL iniciované jeho sodnou solí (KLNa) připravenou in situ reakcí KL s methanolickým roztokem CH₃ONa (cit.⁵) s dřívějšími literárními údaji⁶ lze soudit, že iniciátor připravený in situ má mírně nižší aktivitu než pečlivě izolovaná sodná sůl KL. Polymerizace byly prováděný v širokém rozmezí koncentrace iniciátoru (0,2-10 mol.%) a při teplotách pod i nad teplotou tání vznikajícího polyamidu. Pro počáteční, autoakcelerační fázi polymerizace, během níž se pomalou disproporcionační reakcí tvoří růstová centra, byla stanovena zdánlivá aktivační energie $E_a = 230 \text{ kJ.mol}^{-1}$. Druhé fázi, která se vyznačuje formálně nultým kinetickým řádem reakce vzhledem k monomeru, odpovídá zhruba poloviční aktivační energie, totiž 120 kJ.mol⁻¹, souhlasně s E_{a} odpovídající aktivované polymerizaci⁴. Necelistvý, teplotně závislý řád reakce vzhledem k iniciátoru v obou stadiích polymerizace svědčí o neobvykle komplikovaném reakčním mechanismu, kde je růstová reakce doprovázena bazicky katalyzovanými vedlejšími reakcemi včetně štěpení řetězců. Odpovídá tomu i průběh viskozitního průměru polymerizačního stupně vznikajícího polymeru, který prochází maximem při dosažení asi 80 % obsahu polymeru

Již dříve bylo prokázáno⁷, že iniciátor KLMgBr dávkovaný v izolované formě, nebo vznikající *in situ* reakcí ethylmagnesiumbromidu (EtMgBr) s KL, disproporcionuje v polymerizačním systému na di(ε -kaprolaktamát) hořečnatý (KL₂Mg) a bromid hořečnatý. Iniciační aktivita KLMgBr je výrazně vyšší než aktivita KL₂Mg (cit.⁸) a v obou případech významně závisí na způsobu jejich přípravy. Pro přípravu KL₂Mg jsme testovali několik syntetických postupů. Nejčistší produkt s nejnižším podílem solvatovaného rozpouštědla byl získán reakcí KL s diethylmagnesiem v bezvodém etheru⁹.

Společným rysem neaktivovaných aniontových polymerizací iniciovaných sloučeninami hořčíku – KL₂Mg, KLMgBr i EtMgBr – je absence autoakcelerační periody⁸, která je typická pro polymerizace iniciované alkalickými solemi laktamu. Pozoruhodná je také dosud nepopsaná nevýrazná závislost rychlosti polymerizace na koncentraci iniciující sloučeniny hořčíku. Na rozdíl od iniciace KLNa (cit.⁵), kdy polymer vzniká vyšší rychlostí než při iniciaci hořečnatými sloučeninami a jeho maximálně dosažitelný obsah odpovídá rovnovážnému složení produktu polymerizace při dané teplotě, ustavuje se v případě iniciace KL₂Mg, KLMgBr i EtMgBr limitní obsah polymeru, jehož hodnota je nižší, než odpovídá příslušné rovnováze. Velmi zajímavým aspektem těchto polymerizací

Funkcionalizace telechelického polymeru

Struktura růstového centra

Schéma 1. Příprava blokových kopolymerů poly(ɛ-kaprolaktamu)

je také potlačení tvorby cyklických oligomerů¹⁰ (viz kapitola 4).

Rozdílný je i vliv vody, účinného inhibitoru polymerizace, na polymerizační systémy iniciované jednak alkalickou solí laktamu, jednak sloučeninami hořčíku¹¹. Při polymerizaci iniciované KLNa se s rostoucí koncentrací vody logicky, v důsledku současné hydrolýzy N-acyllaktamových růstových center a iniciátoru, prodlužuje autoakcelerační perioda polymerizace a výrazně klesá polymerizační stupeň vznikajícího polymeru. Nepřesahuje-li obsah vody poloviční hodnotu počáteční koncentrace iniciátoru, je polymerizační systém schopen dosáhnout rovnovážného obsahu polymeru¹¹. Neaktivovaná aniontová polymerizace KL iniciovaná sloučeninami hořčíku je vůči vodě podstatně méně citlivá. Pokles polymerizační rychlosti a polymerizačního stupně vznikajících polymerů je v závislosti na rostoucím obsahu vody pozvolnější. Naopak limitní obsah polymeru s rostoucí koncentrací vody zřetelně klesá. Snížení polymerizačních stupňů produktů polymerizace lze v obou případech iniciace přisoudit štěpení makromolekul vlivem anorganické báze, která vzniká reakcí iniciátoru s vodou. Reakcí Mg iniciátorů s vodou může docházet ke vzniku hydroxyderivátů hořčíku, které jsou schopny v tavenině KL podléhat kondenzačním reakcím, obdobně jako je tomu při řízené hydrolýze alkoxidů kovů za vzniku oxopolymeru¹². Iniciátory tak mohou efektivně vázat vodu a kinetika polymerizace není její přítomností v polymerizační násadě výrazně ovlivněna.

3. Kopolymerizace hexano-6-laktamu

Modifikace vlastností PA 6, resp. úpravy jeho vlastností na míru, lze dosáhnout jak chemickou, tak fyzikální cestou. Fyzikální modifikace spočívá v přípravě směsí, většinou s použitím kompatibilizátorů¹³. Náš zájem se soustřeďuje na chemické modifikace – programově na přípravu blokových kopolymerů PA 6 a kopolymerizace KL s jinými monomery.

Cestou k syntéze blokových kopolymerů PA 6 je aniontová polymerizace KL na vhodně modifikovaných koncových skupinách telechelických polymerů. Výzkum jsme zaměřili na testování a optimalizaci parametrů, které ovlivňují polymerizační proces a mechanické vlastnosti připravených materiálů, a to i z hlediska možného komerčního využití. V závislosti na podmínkách přípravy, obsahu a délce bloků lze regulovat vlastnosti modifikovaného PA 6 od tvrdých až po velmi houževnaté materiály. Základní postup přípravy blokových kopolymerů spočívá v transformaci koncových skupin telechelického polymeru na N-acyllaktamová růstová centra pro následnou polymerizaci KL (schéma 1).

 \bar{V} nedávné době byl v Ústavu polymerů VŠCHT v Praze vypracován postup chemické modifikace PA 6 elastickými bloky polybutadienu (PBD) (cit.^{13,14}). K modifikaci se využívá α,ω-dihydroxypolybutadien (DHPBD), který je připravován v Kaučuku a.s., Kralupy n.Vlt. Pro funkcionalizaci DHPBD rozpuštěného v tavenině KL se osvědčily aromatické diisokyanáty, zvláště pak 2,4(6)-toluendiisokyanát (TDI). Prakticky shodných výsledků funkcionalizace bylo dosaženo i s derivátem TDI, jehož isokyanátové skupiny byly blokovány reakcí s KL. Po přídavku iniciátoru do polymerizačního systému s funkcionalizovaným telechelickým polymerem vzniká v průběhu několika desítek minut, v závislosti na teplotě polymerizace a koncentraci iniciačního systému, blokový kopolymer.

Mechanické vlastnosti připravených blokových kopolymerů jsou určovány obsahem zabudované elastické fáze a její molární hmotností¹⁴. Oproti nemodifikovanému PA 6 se houževnatost zvyšuje až řádově už při obsahu 10 hm.% PBD v kopolymeru, modul pružnosti v tahu a mez pevnosti v tahu se snižují až o polovinu. S rostoucím obsahem polybutadienové fáze se zvyšuje amorfní podíl fáze polyamidové a rovnovážná sorpce vody¹³.

Výrazného zjednodušení přípravy kopolymerů s bloky PA 6 a PBD pro technologické aplikace bylo dosaženo vyřazením diisokyanátů při přípravě polymerizační násady. Ve spolupráci s a.s. Kaučuk Kralupy nad Vltavou byla funkcionalizace DHPBD 2,4(6)-toluendiisokyanátem a následující zablokování volných isokyanátových skupin KL provedeno *extra situ*¹⁵. Výsledkem je netoxický prepolymer s růstovými centry pro polymerizaci KL, která jsou k PBD připojena karbamátovými vazbami, viz schéma 1. Tento polymerní aktivátor (makroaktivátor) se do struktury kopolymeru zabudovává obdobně jako DHPBD funkcionalizovaný *in situ* pomocí TDI, jeho příprava je však lépe reprodukovatelná. Navíc materiály připravené tímto postupem vykazují zřetelně vyšší houževnatost.

Pomocí transmisní elektronové mikroskopie (TEM) bylo prokázáno, že materiály mají očekávanou dvoufázovou strukturu, která je závislá na poměru elastických a tvrdých segmentů^{16,17}.

Náhradou PBD bloků bloky poly(oxyethylenu) (POE) byly připraveny blokové kopolymery polyether/PA 6 s využitím α, ω -dihydroxypoly(oxyethylenů) (DHPOE) a α, ω -diaminopoly(oxyethylenů) (DAPOE) (cit.¹⁸). Ukázalo se, že tvorba blokových kopolymerů a stabilita spojek mezi bloky (schéma 1) výrazně závisí nejen na funkcionalizačním činidle, ale též na bazicitě použitého iniciátoru. Při použití DHPOE a iniciačního systému tvořeného KLNa a KL blokovanými diisokyanáty nevzniká očekávaný blokový kopolymer s PA 6. K polymerizaci KL na funkcionalizovaných koncových skupinách DHPOE a vzniku blokových kopolymerů dochází za iniciace kombinací KLMgBr a N,N'-isoftaloylbis(ε -kaprolaktamu). Úplné zabudování DAPOE do struktury blokového kopolymeru bylo prokázáno při použití obou uvedených iniciačních systémů.

Další možností modifikace vlastností PA 6 je příprava poly(amid-esterů) simultánní aniontovou kopolymerizací KL s ε -kaprolaktonem (KLO). Produktem kopolymerizace je statistický kopolymer poly(ε -kaprolaktam–co- ε -kaprolakton), k němuž vede rychlá transacylační reakce mezi amidovými a esterovými skupinami katalyzovaná použitými bazickými iniciátory¹⁹.

K přípravě kopolymerů s předpokládanou (multi)blokovou strukturou jsme proto využili méně bazický iniciátor – KLMgBr (cit.²⁰). Ten při porovnání se sodnou či draselnou solí KL vede ke vzniku kopolymeru s nejvyšší teplotou tání. U materiálů připravených polymerizačním odléváním směsi KL a KLO roste houževnatost se zvyšujícím se množstvím zabudovaných strukturních jednotek KLO, naproti tomu modul pružnosti v tahu klesá. Připravené kopolymery přesto vykazují jediný endoterm tání (dle DSC), obdobně i NMR spektra ukazovala spíše na statistický charakter kopolymeru.

Termické chování kopolymerů bylo sledováno pomocí HiResTM TGA a produkty degradace charakterizovány pomocí FTIR a hmotnostní spektroskopie²¹. Zde se zřetelně ukázalo, že připravené kopolymery mají částečně blokovou strukturu.

Detailním studiem této kopolymerizace byl potvrzen neobvyklý mechanismus tvorby kopolymerů. Na počátku (během přípravy polymerizační násady) se z polymerizačně mnohem aktivnějšího KLO rychle vytváří homopolymer, při teplotě kopolymerizace (150 °C) zřetelně přispívají k zabudování KL do kopolymeru i výměnné reakce²². Dosažené výsledky přinesly řadu námětů pro další studium této zajímavé problematiky.

4. Cyklické oligomery hexano-6-laktamu

Polymerizace laktamů směřují obecně, bez ohledu na reakční mechanismus do stavu, v němž jsou vedle sebe v rovnováze lineární (makro)molekuly, monomer, cyklické oligomery a iniciátor. Cyklické oligomery (*I*) lze považovat za nejvýznamnější "vedlejší" produkty polymerizace.

$$[NH-(CH_2)_5-CO]_n$$

Rovnovážné produkty polymerizace KL obsahují v závislosti na polymerizační teplotě (180–280 °C) 0,8–3,5 hm.% cyklických oligomerů^{23,24} vedle 2–8 hm.% nezreagovaného monomeru. Převyšuje-li celkový obsah těchto nízkomolekulárních složek 2–3 hm.%, musí být z polymeru odstraňovány, protože mohou negativně ovlivňovat jak zpracovatelské, tak aplikační vlastnosti polyamidu.

Vznik cyklických oligomerů během polymerizace laktamů úzce souvisí s typem použitého iniciátoru polymerizace. Chemická struktura iniciátoru předurčuje typ aktivních center polymerizace, na nichž nejen dochází k růstu polymerních řetězců, ale které se účastní i cyklizačních reakcí. Míra reaktivity aktivních center je pak přímo zodpovědná za obsah a distribuci makrocyklů v průběhu polymerizace. K nejdůležitějším reakcím, které vedou ke vzniku cyklických oligomerů, patří vzájemná reakce koncových skupin lineárních molekul (end-biting) (*1*)

$$A - M_n - B \iff (M_n) + AB$$
 (1)

a intramolekulární reakce koncových skupin s amidovými skupinami uvnitř řetězce (back-biting) (2).

$$A - M_n - B \iff M_m + A - M_{n-m} - B \tag{2}$$

Podle obecného modelu vlivu konkurenčních end- a backbiting reakcí na kinetiku tvorby cyklických oligomerů^{25,26} je možné za převažující mechanismus cyklizace při hydrolytické polymerizaci KL (iniciátor kyselina 6-aminohexanová)²⁷ považovat back-biting (2). Dokládá to monotónní vzrůst koncentrace cyklických oligomerů k rovnovážným hodnotám. V porovnání s vyššími cyklickými homology je v nerovnovážných polymerizátech potlačena tvorba cyklického dimeru. Důvodem je zřejmě nižší pravděpodobnost výskytu konformaceí řetězců nutných pro vznik dimeru v porovnání s konformacemi vyžadovanými pro uzavření cyklu se třemi či čtyřmi strukturními jednotkami. Rovnovážných hodnot dosahuje dimer až po ustavení rovnovážné koncentrace monomeru.

Při kationtové polymerizaci KL (cit.²⁷) dochází v průběhu procesu ke zvýšení obsahu cyklických oligomerů v polymerizátu nad hodnoty rovnovážné, což je typickým znakem převažujícího mechanismu cyklizace end-biting (1). Předpokladem pro to je vyšší aktivace koncových skupin lineárních molekul, totiž N-acyllaktamové a amoniové, v porovnání s koncovými aminovými (amoniovými) a karboxylovými skupinami při polymerizaci hydrolytické. V souhlase se statistickou pravděpodobností výskytu lineárních molekul s n a n + 1 strukturními jednotkami klesá v polymerizačním systému v průběhu celé polymerizace koncentrace makrocyklů od dimeru k hexameru.

Zvlášť zřetelně se projevuje vliv typu iniciátoru na tvorbu cyklických oligomerů při neaktivované aniontové polymerizaci KL (cit.¹⁰). Při iniciaci sodnou solí laktamu je vznik makrocyklů řízen kineticky, to znamená, že v průběhu polymerizace koncentrace cyklů výrazně převyšuje hodnoty rovnovážné, podobně jako u polymerizace kationtové. Naproti tomu v případě iniciace hořečnatou solí KL nebo ethylmagnesiumbromidem bylo při polymerizacích jak pod¹⁰, tak nad²⁸ teplotou vznikajícího polymeru prokázáno výrazné potlačení cyklizačních reakcí. Během polymerizace jsou koncentrace trimeru až pentameru 4-5× nižší, koncentrace dimeru dokonce řádově nižší než hodnoty koncentrací odpovídajících oligomerů ve srovnatelné fázi polymerizace iniciované sodnou solí laktamu. Nižší tendence lineárních molekul k cyklizaci v polymerním systému iniciovaném sloučeninami hořčíku lze pravděpodobně vysvětlit koordinačními efekty sloučenin Mg s koncovými skupinami lineárních molekul, případně amidovými skupinami uvnitř řetězců10. Nepřímo tuto domněnku potvrzuje existence koordinačních sloučenin bromidu hořečnatého s KL (cit.²⁹) a řadou modelových látek s takovými funkčními skupinami, které jsou reálně přítomné v polymerizačním systému (imidy, amidy, primární aminy)²⁸

Pozoruhodnou vlastností nejnižších členů homologické řady cyklických oligomerů KL – dimeru a trimeru – je jejich schopnost měnit krystalovou strukturu v tuhé fázi v závislosti na teplotě. Na základě výsledků studia molekulové struktury dvou identifikovaných forem cyklického dimeru KL (cit.³⁰) a tří forem jeho cyklického trimeru³¹ se podařilo popsat souvislosti mezi teplotně závislými změnami jejich konformační struktury a změnami v nadmolekulové struktuře.

Se zvláštnostmi molekulové struktury cyklických oligomerů KL, zvláště pak dimeru, souvisí chemické vlastnosti těchto sloučenin. Výsoká stabilita dimeru je v literatuře doklá-dána nízkou rychlostí jeho kyselé hydrolýzy^{32,33}. Z porovnání rychlostí acidolýzy cyklického dimeru a trimeru v bezvodém prostředí³⁴ vyplývá, že trimer je asi pětkrát reaktivnější než dimer. Při zahřívání v bezvodém prostředí (260 °C) za vyloučení vzdušného kyslíku podléhá cyklický trimer transamidačním reakcím za vzniku polymeru, cyklických oligomerů a monomeru dokonce rychleji než KL (cit.35). Transamidační reakce dimeru je za stejných podmínek komplikována jeho extrémně vysokou teplotou tání (345 °C). V pevné fázi se ani po 200 hodinách zahřívání při 260 °C chemicky nemění³⁵. Nízká reaktivita cyklického dimeru spolu s jeho vysokou teplotou tání tak představují hlavní problém při zhodnocování směsi oligomerů, která je "odpadním" produktem z výroby hydrolytického polyamidu 6.

Příspěvkem k řešení tohoto ožehavého problému může být právě objasnění zákonitostí tvorby, případně omezení tvorby cyklických oligomerů při polymerizaci hexano-6-laktamu.

5. Závěr

Za více než 60 let od zahájení průmyslové výroby si polyamid-6 vydobyl nezastupitelné místo nejen ve vláknařských aplikacích, ale i jako ušlechtilý konstrukční plast. Další rozšiřování aplikačních možností je často spojeno se specifickými požadavky na některé mechanické nebo fyzikálně-chemické vlastnosti materiálu. Tyto požadavky otevírají široké pole působnosti pro studium kopolymerizace ε-kaprolaktamu, a to nejen s dalšími polyamidotvornými monomery. Se syntézou kopolymerů je spojena otázka efektivních iniciačních systémů kopolymerizace. Nalezení souvislostí mezi strukturou kopolymerů a jejich vlastnostmi nabízí zpětnou vazbu pro navrhování nových kopolymerizačních systémů. Tím se otevírá cesta k novým polyamidovým materiálům. Autoři děkují Ministerstvu školství, mládeže a tělovýchovy ČR za finanční podporu této práce v rámci výzkumného záměru Příprava a vlastnosti moderních materiálů – modelování charakterizace a technologie MSM 223100002.

LITERATURA

- Reimschuessel H. K., v knize: *Ring Opening Polymeri*zation (Frisch K. C., Reegen S. L., ed.), str. 303. Marcel Dekker, New York 1969.
- Šebenda J., v knize: Comprehensive Chemical Kinetics, Non-Radical Polymerization (Bamford C. H., Tipper C. F. H., ed.), sv. 15, str. 379. Elsevier, New York 1976.
- Sekiguchi H., v knize: *Ring Opening Polymerization* (Ivin K. J., Saegusa T., ed.), str. 809. Elsevier, Barling 1984.
- Sebenda J., v knize: Lactam-Based Polyamides (Puffr R., Kubánek V., ed.), sv. I, kap. 2. CRC Press, Boca Raton 1991.
- Havlice J., Brožek J., Šáchová M., Nováková V., Roda J.: Macromol. Chem. Phys. 200, 1200 (1999).
- 6. Šittler E., Šebenda J.: Collect. Czech. Chem. Commun. *33*, 3182 (1968).
- Kotelnikov V. A., Kurašev V. V., Tolstobrova I. O., Danilevskaja L. B., Zacharin L. I., Čekulajeva L. A., Gavrilenko V. V., Garbuzova I. A.: Dokl. Akad. Nauk 308, 1176 (1989).
- Nováková V., Šáchová M., Brožek J., Bernat P., Roda J.: Macromol. Symp. 102, 115 (1996).
- Černý J., Kříž O., Fusek J., Čásenský B., Bernat P., Brožek J., Roda J.: J. Organomet. Chem. 555, 237 (1998).
- Arnoldová P., Prokopová I.: Angew. Makromol. Chem. 269, 25 (1999).
- Brožek J., Bernat P., Fišmanová M., Roda J.: International Symposium on Recent Advances in Ring Opening (Methathesis) Polymerization, Mons-Hainaut, 12–15 April 1999, Poster no. 24.
- 12. Portillo R., Lopez T., Gomez R., Morales B. A., Novar O.: Langmuir *12*, 40 (1996).
- Roda J., v knize: *Block Copolymers* (Baltá Calleja F. J., Roslaniec Z., ed.), str. 93. Marcel Dekker, New York 2000.
- Nováková V., Sobotík R., Matěnová J., Roda J.: Angew. Makromol. Chem. 237, 123 (1995).
- Nováková V., Brožek J., Roda J., Pleska A., Sufčák M.: 39th Microsymposium of P.M.M., Advances in Polymerization Methods: Controlled Synthesis of Functionalized Polymers, Prague, 12–15 July 1999. Sborník, poster no. 10.
- Schmidt P., Roda J., Nováková V., Pastor J. M.: Angew. Makromol. Chem. 245, 113 (1997).

- 17. Schmidt P., Fernandez M. R., Pastor J. M., Roda J.: Polymer *38*, 2067 (1997).
- Brožek J., Bačkovský T., Pilch K., Roda J.: World Polymer Congress Macro 2000, Warsaw, 9–14 July 2000. Sborník, str. 113.
- 19. Goodman I., Vachon R. N.: Eur. Polym. J. 20, 529 (1984).
- 20. Roda J., Košek T.: nepublikované výsledky.
- 21. Draye A.-C., Persenaire O., Brožek J., Roda J., Košek T., Dubois P.: Polymer 42, 8325 (2001).
- Brožek J., Pavlík M., Nováková V., Roda J.: World Polymer Congress Macro 2000, Warsaw, 9–14 July 2000. Sborník, str. 31.
- 23. Mori S., Takeuchi T.: J. Chromatogr. 50, 419 (1970).
- 24. Reimschüssel H. K.: J. Polym. Sci., Part D: Macromol. Rev. 12, 65 (1977).
- 25. Slomkowski S.: J. Macromol. Sci., Part A: Polym. Chem. 21, 1383 (1987).
- 26. Slomkowski S.: Makromol. Chem. 186, 2581 (1986).
- Kvarda J., Prokopová I.: Macromol. Chem. Phys. 199, 971 (1998).
- 28. Arnoldová P., Prokopová I.: nepublikované výsledky.
- Kříž J., Dybal J., Kurková D., Arnoldová P., Prokopová I., Brožek J., Hroch Z.: Macromol. Chem. Phys. 202, 1194 (2001).
- Schneider B., Kvarda J., Dybal J., Schmidt P., Suchopárek M., Prokopová I.: Collect. Czech. Chem. Commun. 58, 2403 (1993).
- Dybal J., Schneider B., Doskočilová D., Baldrian J., Pavlíková H., Kvarda J., Prokopová I.: Polymer 38, 2483 (1997).
- 32. Heikens D., Hermans P. H., Veldhoven H. A.: Makromol. Chem. *30*, 154 (1959).
- Nečajev P., Mojsejev J. V., Zaikov G. E.: Vysokomol. Soedin., A 14, 1048 (1972).
- Kvarda J., Prokopová I., Kondelík P.: Macromol. Chem. Phys. 202, 133 (2001).
- 35. Kvarda J., Prokopová I.: nepublikované výsledky.

J. Brožek, I. Prokopová, and J. Roda (Department of Polymers, Institute of Chemical Technology, Prague): Polymerization and Copolymerization of Hexano-6-lactam

The problems associated with polymerization and copolymerization of lactams have been studied at the Department of Polymers for more than 50 years. During past ten years the research activities have been focused on the study of the anionic polymerization of hexano-6-lactam initiated with magnesium compounds, preparation of block copolymers of polyamide 6 and copolymerization of hexano-6-lactam with lactones. Special attention was devoted to the formation of cyclic oligomers in the polymerization of hexano-6-lactam and their chemical and physicochemical properties.

SPEKTROSKOPIE VIBRAČNÍHO CIRKULÁRNÍHO DICHROISMU JAKO NOVÝ NÁSTROJ STRUKTURNÍ ANALÝZY

MARIE URBANOVÁ^a, VLADIMÍR SETNIČKA^b a KAREL VOLKA^b

^aÚstav fyziky a měřicí techniky a ^bÚstav analytické chemie, Vysoká škola chemicko-technologická v Praze, Technická 5, 166 28 Praha 6

e-mail: marie.urbanova@vscht.cz, vladimir.setnicka@vscht.cz, karel.volka@vscht.cz

Došlo dne 30.I.2002

Klíčová slova: vibrační cirkulární dichroismus, konformace, konfigurace, interakce, porfyrin, polypeptid

Obsah

- 1. Úvod
- 2. Spektroskopie VCD
- 3. Konfigurace farmakologicky významných molekul
- 4. Konformace polypeptidů a bílkovin
- 5. Sledování samoskladby

1. Úvod

Spektroskopie vibračního cirkulárního dichroismu (VCD) (cit.¹–⁴) je moderní spektroskopická metoda, která se v poslední době stává významným nástrojem strukturní analýzy. Zatímco spektroskopie elektronického cirkulárního dichroismu (ECD) je poměrně rozšířená díky dostupným komerčním spektrometrům, spektroskopie VCD byla donedávna pro svou experimentální obtížnost doménou jen několika málo laboratoří na světě. Cílem tohoto příspěvku je uvést tuto moderní metodu a ukázat některé výsledky získané v laboratoři VŠCHT Praha.

2. Spektroskopie VCD

Cirkulární dichroismus ΔA je pro daný vlnočet σ dán rozdílem mezi absorbancí vlevo $A_{\rm L}$ a vpravo $A_{\rm R}$ cirkulárně polarizovaného záření

$$\Delta A = A_{\rm L} - A_{\rm R} = (\varepsilon_{\rm L} - \varepsilon_{\rm R})cl \tag{1}$$

kde $\varepsilon_{\rm L}$ a $\varepsilon_{\rm R}$ jsou molární absorpční koeficienty, *c* je látková koncentrace a *l* je tloušťka absorbující vrstvy. Zatímco ECD je vázán na přechody mezi elektronickými hladinami, za VCD jsou zodpovědné přechody mezi hladinami vibračními.

Podmínkou pro nenulový VCD je chiralita dané látky či směsi látek. Kvantově mechanické vyjádření vede k tomu, že intenzita cirkulárně dichroického pásu při přechodu ze stavu $g\,0$ do stavu $g\,1$ je dána tzv. rotační silou přechodu vyjádřenou vztahem²

$$R_{01} = Im \left[\langle g0|\hat{\mu}|g1 \rangle . \langle g1|\hat{m}|g0 \rangle \right]$$
(2)

Rotační síla přechodu je tedy určena nejen velikostí elektrického $\vec{\mu}$ a magnetického \vec{m} momentu molekuly, ale také jejich vzájemnou orientací. Proto lze z intenzity, znaménka a polohy VCD pásů získat dodatečnou informaci o prostorovém uspořádání molekuly.

Chiralitu vykazují jak molekuly malých a středních rozměrů, jako jsou například vitaminy, léčiva nebo antibiotika, tak také obří biologicky významné polymerní molekuly, jako jsou polypeptidy, bílkoviny nebo DNA. Odtud plyne význam a perspektiva metody: VCD umožňuje studovat konformace všech těchto biologicky významných molekul bez ohledu na jejich molekulovou hmotnost za různých fyzikálně-chemických podmínek v roztocích, kdy je použití jiných metod, jako spektrometrie NMR či rentgenové strukturní analýzy, omezené.

Přednosti infračervené spektroskopie ve srovnání s absorpční spektroskopií v ultrafialové a viditelné oblasti, pokud jde o strukturní analýzu, jsou dobře známé. Zatímco ultrafialová a viditelná spektra jsou obvykle tvořena několika širokými, silně se překrývajícími absorpčními pásy, jejichž přítomnost je nejčastěji vázána na elektronické přechody v rámci dvojných vazeb či volných elektronových párů v molekule, infračervená spektra jsou informačně nepoměrně bohatší a dovolují získat strukturní informace o celé molekule. Interpretaci spektra je možné provádět už na úrovni empirického přiřazení absorpčních pásů jednotlivým funkčním skupinám. Přiřazení pásů infračerveného spektra lze pak přenést také na VCD spektrum. Detailní analýzu však dovoluje teprve kvantově--mechanický výpočet.

Signály VCD jsou ve srovnání s ECD výrazně menší: $\Delta A/A \sim 10^{-4}-10^{-5}$. To je také důvod, proč je vlastní měření VCD spektra poměrně obtížné, proč je potřebná vyšší koncentrace vzorků v roztocích a je omezené použití vody jako rozpouštědla, ale hlavně proč je dosud spektroskopie VCD méně rozšířená než spektroskopie ECD. Na Ústav analytické chemie VŠCHT v Praze byl v rámci projektu VS 97135 zakoupen první komerční spektrometr firmy Bruker, a tak se tento ústav stal jedním z řádově deseti světových pracovišť, kde je možné měřit kvalitní VCD spektra kapalných vzorků ve střední infračervené oblasti. Přístroj je tvořen spektrometrem s Fourierovou transformací IFS 66/S, který je opatřen VCD/IRRAS modulem PMA 37. Metodika měření VCD byla publikována dříve⁵.

3. Konfigurace farmakologicky významných molekul

Spektra VCD v kombinaci s jejich *ab initio* simulací mohou být použita k určení absolutní konfigurace malých až středních chirálních molekul; např. se mohou s výhodou uplat-

Obr. 1. Experimentální (a) a simulovaná (b) VCD spektra prekurzoru chirálního léčiva femoxetinu; $c = 0,64 \text{ mol.}\Gamma^1 \text{ v CDCl}_3$, (3R,4S)-MP-OH (1), (3S,4R)-MP-OH (2), experimentální (3) a simulované (4) VCD spektrum derivátu (3R,4S)-MP-OCH₃, typické spektrum šumu (5); čísla u jednotlivých pásů simulovaného spektra 4 značí normální módy a jejich přiřazení ve spektrech 1, 2 a 3

nit při studiu chirálních léčiv, zejména těch, jejichž léčebné účinky se pojí s určitou enantiomerní formou. Obecný postup² určení absolutní konfigurace je následující: Na základě kvantově mechanického *ab initio* výpočtu je simulováno VCD spektrum molekuly pro odhadnutou absolutní konfiguraci. Jestliže simulované a experimentální VCD spektrum sobě odpovídají v polohách, relativních intenzitách a znaméncích VCD pásů, je konfigurace molekuly zvolená pro *ab initio* výpočty totožná s konfigurací měřené molekuly. Stereochemická VCD studie tohoto typu je ukázána na následujícím příkladu.

Na obr. 1 jsou VCD spektra (3R,4S)-4-(4-fluorofenyl)-3--hydroxymethyl-1-methylpiperidinu ((3R,4S)-MP-OH), látky, která je meziproduktem při výrobě antidepresivního léčiva femoxetinu, a jejíž předpokládaná absolutní konfigurace byla dokázána výše uvedeným postupem v naší práci⁶. Spektry VCD je možné velmi spolehlivě odlišit jednotlivé enantiomery, jak je na obr. 1 ukázáno pro (3R,4S)-MP-OH a (3S,4R)--MP-OH. Opačné enantiomery poskytují VCD spektra, která jsou zrcadlově symetrická vzhledem k nulové linii. Spektra VCD byla dále použita při sledování vlivu substituce na absolutní konfiguraci léčiva. Na obr. 1 je VCD spektrum derivátu ((3R,4S)-MP-OCH₃), ve kterém je postranní skupina –OH na

Obr. 2. Korelace mezi sekundárními strukturami bílkovin a polypeptidů a jejich VCD (a) a infračervenými (b) spektry v oblasti amid I' a II'; $\rho = 50$ g.l⁻¹ v D₂O, hemoglobin – vysoký obsah α-šroubovice (1), konkanavalin A – vysoký obsah β-struktury (2), poly(L-lysin) – struktura náhodného klubka (3)

chirálním uhlíku C3 nahrazena skupinou $-OCH_3$. Z obrázku je patrná velmi dobrá shoda mezi experimentálními a simulovanými spektry (3*R*,4*S*)-MP-OCH₃, která umožňuje přiřadit spektrální pásy jednotlivým vibračním modům. Ze srovnání VCD spekter *1* a *3* plyne, že derivát (3*R*,4*S*)-MP-OCH₃ má absolutní konfiguraci shodnou s (3*R*,4*S*)-MP-OH, určité konformační odlišnosti jsou patrné z tvaru VCD pásů, které odpovídají skeletálním vibracím v blízkosti atomu C3 (např. mody 47–49).

4. Konformace polypeptidů a bílkovin

VCD spektroskopie je dobře využitelná ke studiu konformace a konformačních změn peptidů a bílkovin v roztocích. Tyto studie zároveň patří k nejzajímavějším aplikacím spektroskopie VCD. Využívají se zejména infračervené pásy označované jako amid I a amid II, příp. amid I' a II' pro deuterované vzorky. Amid I a I' (1800–1600 cm⁻¹) je vyvolán především valenční vibrací skupiny C=O peptidové vazby, amid II $(1600-1500 \text{ cm}^{-1})$ a amid II² $(1500-1400 \text{ cm}^{-1})$ je projevem rovinné deformační N-H (popř. N-D) vibrace smíšené s valenční C-N vibrací. Mezi sekundárními strukturami peptidů a bílkovin a jejich VCD spektry v oblasti amid I a II existuje semiempirická korelace¹, kterou na obr. 2 demonstrují VCD spektra bílkovin a polypeptidů, jejichž obsah sekundárních struktur je znám z rentgenové strukturní analýzy. Obrázek ukazuje, že VCD pás amidu I´ je charakteristický pro jednotlivé sekundární struktury, a dokumentuje, oč zřejmější je rozdíl mezi jednotlivými konformacemi ve spektrech VCD ve srovnání s nepolarizovanými infračervenými absorpčními spektry.

Popsanou semiempirickou korelaci jsme využili ke sledování změny struktury poly(L-lysinu) (PL), ke které dochází při komplexaci s meso-tetrakis(4-sulfonatofenyl)porfyrinem

Referáty

Obr. 3. VCD spektra komplexů PL₁₂₅₀ (a) a PL₃₄₃₀₀ (b) s TPPS; $c(PL) = 0.39 \text{ mol.}^{-1}$; a – čistý PL₁₂₅₀ (*1*), c(PL)/c(TPPS) = 20 (2), c(PL)/c(TPPS) = 5 (*3*); b – čistý PL₃₄₃₀₀ (*1*), c(PL)/c(TPPS) = 20 (2), čistý TPPS (*3*), typické spektrum šumu (*4*); c(PL) je látková koncentrace přepočtená na lysinové zbytky

(TPPS). Byly zvoleny dva různě dlouhé řetězce PL se středními molekulovými hmotnostmi 1250 a 34 300 (PL₁₂₅₀, PL₃₄₃₀₀), které byly tvořeny v prvním případě deseti a ve druhém stovkami aminokyselinových zbytků. Zatímco se nepolarizovaná infračervená absorpční spektra peptidové a porfyrinové části komplexu ve střední infračervené oblasti překrývají, porfyrinová část komplexu nepřispívá ke spektru VCD v této oblasti (obr. 3b). Tato skutečnost umožňuje sledovat změnu konformace polymerní peptidové matrice při interakci s porfyrinem. Obě peptidové matrice PL₁₂₅₀ a PL₃₄₃₀₀ bez přítomnosti porfyrinu poskytují VCD spektrum charakteristické¹ pro konformaci tradičně označovanou jako "náhodné klubko" (obr. 3). Vznik komplexu, který je ověřen fluorescencí, ECD a absorpčními spektry ve viditelné oblasti⁷, je doprovázen výraznou změnou tvaru VCD spektra TPPS/PL1250 v amidové oblasti (obr. 3a), zatímco komplexace TPPS/PL $_{\rm 34300}$ vyvolává pouze změny ve spektru na úrovni šumu (obr. 3b). Interakce porfyrinu a PL₁₂₅₀ vede tedy k lokální destabilizaci původní konformace a ke vzniku nové, dobře definované lokální struktury, která je pravděpodobně tvořena úseky šroubovice nebo β-struktury. Z nezměného tvaru VCD spektra v případě TPPS/ PL34300 plyne, že při interakci s TPPS nedochází ke změně konformace polypeptidové matrice s dlouhým řetězcem. Spektroskopie VCD tak doplňuje obraz o struktuře peptidové části hojně sledovaných porfyrin-peptidových komplexů, které jsou modelovým systémem porfyrin-bílkovinných komplexů, majících význam v primárních stadiích fotosyntézy, přenosu energie a také ve fotodynamické terapii.

5. Sledování samoskladby

Populární tematikou současné supramolekulární chemie je samoskladba (self-assembly), spontánní asociace molekul do uspořádaných agregátů. Během procesu samoskladby může dojít v agregátu ke vzniku indukované chirality, která se projevuje cirkulárním dichroismem. Oproti častěji používanému ECD má VCD výhodu v tom, že umožňuje sledovat indukovanou optickou aktivitu spojenou s charakteristickými vibracemi funkčních skupin zapojených do procesu samo-

Obr. 4. **VCD** (a) a infračervená (b) spektra tetrabrucin-porfyrinového konjugátu v závislosti na rozpouštědle: DMSO-d₆, pravý roztok (1), CD₃OD, gel (2); struktura

skladby. Tvorba supramolekulárních útvarů může být doprovázena i fázovým přechodem roztoku v gel (přechod solgel), při kterém jsou molekuly organických rozpouštědel imobilizovány nízkomolekulárními látkami, tzv. gelátory⁸.

Spektroskopii VCD lze použít při sledování fázového přechodu sol-gel v roztocích tetrabrucin-porfyrinového konjugátu, jehož struktura je na obr. 4. Vznik gelu za účasti této látky je podmíněn volbou rozpouštědla: roztok v CD₃OD přechází po sonifikaci v gel9, látka rozpuštěná v CDCl3 nebo DMSO-d₆ zůstává v roztoku. Zatímco přechod sol-gel se v nepolarizovaných absorpčních spektrech ve střední infračervené oblasti projevuje jen malou změnou intenzit a poloh pásů (obr. 4b), ve spektrech VCD pozorujeme změnu znaménka a intenzity pásu u 1660 cm⁻¹, který přísluší charakteristické vibraci skupin C=O v brucinové části konjugátu (obr. 4a). Při procesu gelování dochází tedy ke změně chirality v oblasti vazby C=O. Podle našich znalostí se jedná o vůbec první využití spektroskopie VCD k detekci fázového přechodu sol--gel. VCD pás u $1660 \,\mathrm{cm}^{-1}$ jsme dále využili ke sledování vlivu fyzikálně-chemických podmínek na přechod sol-gel. Ukázali jsme¹⁰, že k přechodu do fáze gelu dochází pro objemový poměr CD₃OD/DMSO-d₆ \geq 4/1 a gel je stabilní při teplotách 20-50 °C. Při vyšších teplotách dochází k postupnému fázovému přechodu zpět do roztoku.

Tato práce byla podpořena Ministerstvem školství, mládeže a tělovýchovy v rámci projektu VS 97135 a výzkumného záměru CB MSM 223400008 a Grantovou agenturou AV ČR (IAA4055104).

LITERATURA

- Keiderling T. A., v knize: Circular Dichroism: Principles and Applications (Berova N., Nakanishi K., Woody R. W., ed.), str. 621. Wiley, New York 2000.
- 2. Nafie L. A., Freedman T. B.: Enantiomer 3, 283 (1998).
- Polavarapu P. L., Zhao Ch.: Fresenius' J. Anal. Chem. 366, 727 (2000).
- 4. Stephens P. J.: J. Phys. Chem. 89, 748 (1985).
- Urbanová M., Setnička V., Volka K.: Chirality 12, 199 (2000).
- Bouř P., Navrátilová H., Setnička V., Urbanová M., Volka K.: J. Org. Chem. 67, 161 (2002).
- Urbanová M., Setnička V., Král V., Volka K.: Biopolymers 60, 307 (2001).
- 8. Terech P., Weiss R. G.: Chem. Rev. 97, 3133 (1997).
- 9. Král V., Schmidtchen F. P., Lang K., Berger M., Pataridis

S., Setnička V.: 9th Meeting on Stereochemistry, Book of Abstracts, str. 169. VŠCHT Praha a ČSCH, Praha 2001.

 Setnička V., Urbanová M., Pataridis S., Král V., Volka K.: 9th European Conference on the Spectroscopy of Biological Molecules, Prague, 8–13 September 2001, Book of Abstracts (Kopecký V., Ruszová K., Štěpánek J., ed.), str. 212. Fyzikální ústav Matematicko-fyzikální fakulty Univerzity Karlovy v Praze, Praha 2001.

M. Urbanová^a, V. Setnička^b, and K. Volka^b (^aDepartment of Physics and Measurements, ^bDepartment of Analytical Chemistry, Institute of Chemical Technology, Prague): Vibrational Circular Dichroism Spectroscopy as a Novel Tool for Structure Analysis

Vibrational circular dichroism spectroscopy is briefly characterized and its application to stereochemical analysis is described. As examples, determination of absolute configuration of a pharmaceutically interesting precursor of femoxetine, monitoring of conformational changes of the peptide part of porphyrin-polypeptide complexes and of the sol-gel phase--transition process in tetrabrucine-porphyrin system are given.

NIR SPEKTROSKOPIE A JEJÍ VYUŽITÍ PŘI ANALÝZE MLÉKA A MLÉČNÝCH VÝROBKŮ

LADISLAV ČURDA^a, OLGA KUKAČKOVÁ^a a MIROSLAVA NOVOTNÁ^b

^aÚstav technologie mléka a tuků a ^bCentrální laboratoře, Vysoká škola chemicko-technologická v Praze, Technická 5, 166 28 Praha 6

e-mail: Ladislav.Curda@vscht.cz, Miroslava.Novotna@vscht.cz

Došlo dne 6.II.2002

Klíčová slova: NIR spektroskopie, mléko, mléčné výrobky, chemometrie

Obsah

- 1. Úvod
- 2. NIR spektroskopie
- 2.1. Principy2.2. Technika měření NIR spekter
 - 2.3. Chemometrické metody pro NIR spektroskopii
- 3. Aplikace NIR spektroskopie v mlékárenském průmyslu 3.1. Tekuté mléko
 - 3.2. Fermentované mléčné výrobky
 - 3.3. Zahuštěné a sušené mléko
 - 3.4. Sýry a tvarohy
 - 3.5. Ostatní mlékárenské výrobky a aplikace
- 4. Závěr

1. Úvod

V současné době je pro analýzu mléka a mlékárenských výrobků preferována spektroskopie ve střední IR oblasti (IR spektroskopie). Hlavní nevýhodou IR spektroskopie je silná absorpce vody, především v oblasti kolem 1650 cm⁻¹, kde může zastínit užitečné absorpce bílkovin, močoviny a acetonu. NIR spektroskopie byla již v minulých letech uznána jako metoda vhodná pro analýzu složení především obilovin, krmiv a masa. Pro mléko a mléčné výrobky zatím NIR spektroskopie u nás není příliš rozšířená. Cílem této práce je proto seznámit s principy NIR spektroskopie, vyhodnocením naměřených spekter, s výhodami a využitím této metody v oblasti mlékárenství. Ve světě publikovali práci s obdobnou tematikou naposledy Rodriguez-Otero a spol.¹ v roce 1997.

2. NIR spektroskopie

2.1. Principy

NIR spektroskopie je jednou z metod molekulové spektroskopie², která využívá spektrální oblast vymezenou vlnovými délkami 800 nm a 2500 nm, tj. vlnočty od 12 500 do

4000 cm⁻¹. Charakteristické absorpce v NIR oblasti jsou spojeny se svrchními tóny a kombinačními přechody valenčních a deformačních vibrací. Svrchní tóny a kombinační přechody způsobují rozšíření absorpčních pásů v NIR spektru. Spektrum je také ovlivněno okolím měřené vazby, tak je možné stanovit např. chlorid sodný, který sám není v NIR aktivní, ale působí na polohu absorpce vody³.

Z výše uvedeného vyplývá, že identifikace absorpčních pásů v NIR spektru je poměrně obtížná, proto se NIR spektroskopie nevyužívá k identifikaci látek na základě přiřazení absorpčních pásů jednotlivým funkčním skupinám, jak je obvyklé ve střední oblasti. NIR spektroskopie je z těchto důvodů vhodná především ke kvantitativní analýze, která je založena na celo-spektrálních metodách².

2.2. Technika měření NIR spekter

Techniky měření NIR spekter lze v principu rozdělit na techniky měřící absorpci záření po průchodu vzorkem (transmitance) a techniky měřící absorpci záření po odrazu paprsku od povrchu vzorku (reflektanci)⁴. Nejčastěji používanou technikou v NIR spektroskopii je difuzní reflektance. Difuzní reflektance je vhodná např. pro měření spekter suchých vzorků, které jsou tvořeny malými částicemi a v důsledku toho produkují difuzně reflektanční spektra. Měření transmitance je používáno nejčastěji pro získávání spekter kapalných, příp. kašovitých vzorků. Touto technikou lze měřit vlastnosti zakalených kapalin (např. mléka) i v průtočné kyvetě napojené na výrobní linku. Transflektační uspořádání je vhodné jen pro měření méně absorbujících vzorků. Pro techniku interaktance je ideální použití vláknové optiky, kterou lze měřit podpovrchové charakteristiky vzorků o větší tloušťce⁴. Jednoduchost a možnost přesunutí měření z laboratoře přímo do výroby³ je základem rostoucí obliby vláknové optiky2.

Přístrojová technika pro NIR spektroskopii se vyvíjela od filtrových přístrojů přes stále poměrně rozšířené disperzní spektrometry, které jsou však postupně nahrazovány přístroji s Fourierovou transformací (FT). FT NIR spektrometr má ve srovnání s disperzním spektrometrem řadu výhod, především vyšší rychlost snímání spekter, lepší poměr signálu k šumu, vysokou vlnočtovou přesnost, velkou rozlišovací schopnost a konstantní rozlišení v celém rozsahu spektra². Nověji se také objevují přístroje s DAD (diode-array detector)⁵.

2.3. Chemometrické metody pro NIR spektroskopii

Pro stanovovanou složku musí být provedena kalibrace příslušného NIR spektrometru pomocí vhodného souboru kalibračních standardů (nejméně 30 vzorků) o známém složení, které je určeno nezávislou analytickou metodou³. Kalibrační vzorky by měly charakterizovat v maximální míře vlastnosti analyzovaných vzorků a měly by pokrývat celý koncentrační rozsah. Úzké koncentrační rozpětí kalibračních vzorků lze řešit přípravou modelových vzorků.

Před kalibrací je obvykle nutná úprava spektrálních dat.

Obr. 1. Příklady NIR reflektančních spekter mléka a mlékárenských produktů; 1 - syrové mléko, 2 - tavený sýr 20 % t. v s., 3 - tavený sýr 45 % t. v s., 4 - tavený sýr 60 % t. v s., 5 - kaseinát sodný, A - absorbance, $\lambda -$ vlnová délka

Typická NIR spektra jsou charakterizována lineárním rostoucím trendem od kratších k delším vlnovým délkám (obr. 1), což je způsobeno rozptylem, který závisí na velikosti pevných částic vzorku a vlnové délce dopadajícího záření. Lineární trend lze odstranit 1. derivací spektra, používají se i derivace vyšší. K častým úpravám dále patří vícenásobná korekce rozptylu (MSC – multiplicative scatter correction) a posun základní linie spekter (baseline shift). Vliv velikosti částic redukuje SNV (Standard Normal Variate), která upravuje každé spektrum tak, aby v souboru byla směrodatná odchylka proměnných v každém bodě rovna 1. Detrend odstraňuje lineární a kvadratické zakřivení každého spektra. Často bývají metodiky SNV a detrend používány při úpravě spekter současně^{6,7}.

Tvorba kalibračního modelu vyžaduje použití počítače vybaveného chemometrickým softwarem. Principem kalibrace je získání závislosti mezi spektrální informací a složením vzorku. Zpočátku byla pro kalibraci (především filtrových přístrojů) využívána metoda vícenásobné lineární regrese. Tento kalibrační model nemusí být vždy dostatečně robustní^{6,8}. Regrese hlavních komponent (PCR) a metoda částečných nejmenších čtverců (PLS) pracují s celým spektrem a jsou založeny na zhuštění spektrální informace do nových proměnných. Tím je odstraněn problém způsobený multikolinearitou. Původní vícerozměrný systém je při PCR redukován bez podstatné ztráty informace analýzou hlavních komponent (PCA). PC jsou pro regresi při PCR nejčastěji vybírány sestupně podle vlastní hodnoty (eigenvalue). Při PLS jsou novými proměnnými PLS faktory, které jsou lineárními kombinacemi původních absorbancí. Jsou počítány tak, aby byla maximalizována kovariance mezi PLS faktory a koncentrací analytu9. Důležitým diagnostickým nástrojem pro vývoj kalibračního modelu je závislost PRESS (predicted residual sum of squares) na počtu PC nebo PLS faktorů použitých ke kalibraci. Optimální počet PLS faktorů se volí v minimu funkce PRESS. Vysoký počet PLS faktorů snižuje schopnost predikce, protože PRESS zahrnuje i spektrální šum⁶. Při tvorbě kalibračních modelů se využívá i nelineární regrese. Takové zpracování dat umožňuje metoda umělých neuronových sítí (ANN - artificial neural network), která je sice náročná, protože vyžaduje veliký kalibrační soubor (500 a více vzorků), ale odchylka stanovení by měla být nižší¹⁰.

K posouzení spolehlivosti získaného kalibračního modelu

slouží validace. Jednou z možností je validace pomocí nezávislého souboru vzorků o známém složení, které nebyly zahrnuty v kalibračním souboru. S referenčními hodnotami složek zjištěnými nezávislými metodami se porovnávají koncentrace složek předpovězené prostřednictvím kalibračních modelů. Jestliže není k dispozici nezávislý soubor vzorků, používá se k ověření správnosti kalibračního modelu křížová validace. Kontrola spočívá ve vyloučení určitého vzorku nebo skupiny vzorků z kalibračního souboru, ostatní vzorky se použijí jako kalibrační a validační vzorek nebo skupiny vzorků se vyhodnotí, postup se opakuje se všemi vzorky⁶.

Kvalitu kalibračního modelu lze posoudit podle směrodatné odchylky kalibrace (*SEC* – standard error of calibration) definované vztahem:

$$SEC = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (y_{\rm NIR} - x_i)^2}$$
(1)

kde y_{NIR} je hodnota předpovězená z NIR spektra, x_i referenční laboratorní hodnota *i*-tého kalibračního vzorku, N je počet kalibračních vzorků^{6,7}. Při validaci se používá směrodatná odchylka predikce *SEP* (standard error of prediction). Je kladen důraz na minimální *SEP*, protože se jedná o odchylku, která je očekávána v budoucích předpovědích. *SEP* spolehlivé kalibrace není obvykle o mnoho větší než *SEC* (cit.^{6,7}). Pro porovnání spolehlivosti kalibrace pro různé složky lze vypočítat kalibrační variační koeficient *CCV* (calibration coefficient of variation), který vyjadřuje *SEC* v procentech průměrné laboratorní hodnoty. Analogicky lze vypočítat na základě *SEP* predikční variační koeficient^{6,7}. Výhodou *CCV* ve srovnání s *SEC* je nezávislost na použitých jednotkách. Dobrá kalibrace má hodnotu *CCV* pod 5 % a *CCV* do 10 % je ještě přijatelný⁸.

Referenční a predikované hodnoty by v ideálním případě měly vykazovat lineární závislost jdoucí počátkem a se směrnicí rovnou 1. Kvalitu modelu lze proto posoudit na základě korelačního koeficientu *R*, testováním koeficientů lineární závislosti, dále lze využít t-test, resp. z-test⁷.

Dalšími metodami, jejichž použití má význam především při identifikaci a kvalifikaci neznámého vzorku, je analýza hlavních komponent (PCA – principal component analysis) a shluková analýza (cluster analysis). Tyto postupy slouží k posouzení míry shody neznámého vzorku se standardem nebo jeho zařazení do charakterově nejbližší třídy^{5,6}.

3. Aplikace NIR spektroskopie v mlékárenském průmyslu

Spektroskopie v NIR oblasti se v potravinářství a zemědělství jako jediných oborech uplatňuje už od 60. let (stanovení vody, proteinů, olejů a tuků, sacharidů). Další uplatnění našla ve farmacii, petrochemii, medicíně a při sledování životního prostředí⁵. NIR spektroskopie se používá zejména pro stanovení hlavních složek, tzn. sušiny, bílkovin, tuku a sacharidů. Při analýze mléka a mlékárenských výrobků jsou to nejčastěji prováděné rozbory, a proto má NIR spektroskopie je v této oblasti velký potenciál. Aplikace NIR spektroskopie je však mnohem širší a zahrnuje i stanovení senzorických a fyzikálně-chemických parametrů (hustota, bod tuhnutí, pH, velikost částic)¹. Úspěšnost při využití NIR spektroskopie závisí
nejen na kvalitě přístroje a jeho konstrukci, ale také na referenční metodě, standardní přípravě vzorku, jeho homogenitě a v neposlední řadě na kalibrační metodě.

3.1. Tekuté mléko

V analýze zpracovávaného mléka a tekutých mléčných výrobků je dominantní střední infračervená oblast s přístroji typu MilkoScan, proto je počet původních prací poměrně malý. Přesto je NIR spektroskopie i v této oblasti použitelná. Publikované práce^{11–20} jsou nejčastěji věnovány základnímu složení mléka (sušina, tuk, bílkoviny a laktosa). NIR spektra jsou obvykle snímána v transmitanci.

U syrového mléka je snaha o měření vzorků bez homogenizace^{11,12}. Tento postup ověřili např. Chen a spol.¹² na 154 vzorcích mléka pro stanovení tuku. Transmitančně naměřená spektra byla zpracována metodou PLS. Získaná kalibrace vykazovala velmi dobré parametry (korelační koeficient kalibrace 0,99 a *SEP* 0,19 %).

Řadu prací, která se zabývá složením syrového nehomogenizovaného mléka a obsahem somatických buněk, publikovali Tsenkova a spol.¹³ Zánět mléčné žlázy, který se projevuje vysokým počtem somatických buněk, ovlivňuje také složení mléka. Somatické buňky zvyšují rozptyl světla, protože se mění distribuce částic v mléce. Pomocí transmitančních spekter nehomogenizovaného syrového mléka je možné rozeznat mléko od dojnice se zánětem vemene (mastitidou). Nezávislá validace ukázala, že vzorky s vysokým počtem somatických buněk jsou analyzovány s nižší přesností. Podmínky měření složek nehomogenizovaného mléka byly dále optimalizovány^{14,15}. Nejlepších výsledků bylo dosaženo ve spektrální oblasti 1100–2400 nm v 1 mm kyvetě po úpravě spekter 1. derivací s využitím PLS metody.

Kamishikiryo-Yamashita a spol.¹⁶ se zabývali stanovením bílkovin. Pro kalibraci byly použity hodnoty 2. derivace log (1/T). Luinge a spol.¹⁷ porovnali FT IR spektrometr Perkin-Elmer a filtrový NIR analyzátor Multispec MAK 2 pro stanovení tuku, bílkovin a laktosy.

Hall a Chan¹⁸ publikovali práci zabývající se analýzou tuku, bílkovin a laktosy. Transmitanční spektra (700–2500 nm) byla zpracována vícenásobnou lineární regresí. Po nezávislé validaci měly korelační koeficient a SEP hodnotu pro tuk 0,99 a 0,04 %, pro bílkoviny 0,94 a 0,08 % a pro laktosu 0,82 a 0,05 %.

Pro analýzu mléka se stále častěji objevuje on-line NIR měření. Při kontrole tuku v mléce byl použit on-line systém NIRSystems Process Analytics 5500, který byl napojen na výrobní zařízení a byl sledován průběh výroby¹⁹. Spektra byla snímána v rozsahu 700 až 1100 nm vláknovou optikou. K vytvoření kalibračního a validačního modelu bylo použito vícenásobné lineární regrese a pro stanovení tuku v mléce byl získán korelační koeficient kalibrace 0,84 a *SEP* 0,07 %. Velmi úzké koncentrační rozpětí tuku v mléce přispělo k nepřesnostem ve vytvořených kalibracích. On-line systém Katrina Protronic popisuje ve své práci také Newman²⁰.

3.2. Fermentované mléčné výrobky

Také v této mlékárenské oblasti převažuje při kontrole suroviny, meziproduktu i výrobku střední IR oblast. Rozsáhlá práce věnovaná problematice kontroly jakosti jogurtů a dalších mlékárenských výrobků prostřednictvím NIR spektroskopie byla zpracována Jindřichem²¹. Byly porovnány dva typy přístrojů – disperzní spektrometr NIRSystems 6500 a spektrometr s FT Nicolet Protégé 460. Základní složení jogurtů (sušina, tuk, bílkoviny) bylo měřeno v transportní kyvetě a vláknovou optikou na přístroji NIRSystems 6500. Při porovnání hodnot získaných kalibrací těmito dvěma různými technikami nebyly zjištěny významnější rozdíly. Měření v kyvetě vyžaduje pracnější a složitější přípravu vzorků na rozdíl od techniky vláknové optiky, kde se sonda přímo ponořila do vzorku. Na přístroji Nicolet Protégé 460 byly jogurty také proměřeny pomocí vláknové optiky. Při kalibraci na disperzním přístroji byla použita 1. nebo 2. derivace spektra a 4 PLS faktory, na přístroji s FT 1. derivace a 5 až 6 faktorů.

Kalibrace pro stanovení tuku, bílkovin a sušiny ve fermentovaných výrobcích²² provedená s 1. derivací spekter (reflektance, 30 mm kyveta) poskytla pro všechny složky vysoké korelační koeficienty a nízké *SEC*. Při validaci se korelační koeficienty příliš nezměnily, ale *SEP* byla i třikrát horší než *SEC*. Příčinou je vysoký počet PLS faktorů (7 pro tuk, 10 pro bílkoviny, 11 pro sušinu). V další publikaci autoři²³ doporučují pro výrobky tohoto typu spíše transflektanční měření, protože u vzorků rozptylujících záření je takto změřeno veškeré neabsorbované záření. Vzorky (103 kalibračních a 40 validačních) byly měřeny v rozsahu 1100–2500 nm spektrometrem NIR-Systems 6500 v 0,2 mm kyvetě. S použitím MPLS metody po úpravě spekter (SNV, detrend a MSC) byly získány nejlepší kalibrační výsledky s 1. nebo 2. derivací spekter a se 6 až 8 PLS faktory.

3.3. Zahuštěné a sušené mléko

V analytice a kontrole potravinářských surovin a výrobků s nízkým obsahem vody – mouka, zrno, olejnatá semena i sušené mléko se využívá ve velkém měřítku NIR spektroskopie a filtrové přístroje obvykle v reflektančním uspořádání. Filtrové přístroje jsou v této oblasti v současné době rutinně používány.

Martel a Paquin²⁴ sledovali průběh zahušťování mléka. K měření byl použit FT spektrometr Bomem DA3 v transmitanci (kyveta 0,3 mm). Obsah vody byl korelován s absorbancí při 6900 cm⁻¹ (1450 nm). K omezení rozptylu světla je nutná vysokotlaká homogenizace vzorku.

Barabássy a Kaffka²⁶ kalibrovali přístroje NIRSystems 6500 a PMC Spectralyzer 1025 na základě měření 104 směsí mléčného sušeného prášku, obsahujícího v různém poměru odstředěné mléko, sušenou syrovátku, bílkoviny a laktosu pro stanovení vlhkosti, tuku, bílkovin, laktosy a popelovin. Vytvořením kombinací složek ve směsích bylo rozšířeno koncentrační rozpětí jednotlivých stanovovaných složek, a tím byla zvýšena úspěšnost kalibrace.

Zajímavou aplikací je klasifikace sušeného mléka podle tepelného ošetření a posouzení míry denaturace bílkovin^{3,25}. Kalibrace je založena na měření změn vodíkových a disulfidových vazeb, tvorbě H_2S a distribuce velikostí částic.

3.4. Sýry a tvarohy

Značnou perspektivu má NIR spektroskopie při kontrole výroby sýrů a tvarohů, protože v této oblasti jí nekonkuruje IR spektroskopie.

Přesnost stanovení tuku, bílkovin a sušiny v sýrech NIR reflektanční spektroskopií ve srovnání s referenčními metodami hodnotí Rodríguez-Otero a spol.²⁷ Pro kalibraci bylo na přístroji NIRSystems 6500 v odrazu proměřeno 92 kalibračních a 25 validačních vzorků sýrů. Kalibrace byla vyhodnocena MPLS regresí, pro některé složky však byla použita až 3. derivace spekter a 8 faktorů. Stejné pracoviště²⁸ ověřovalo přístroj Meatspec s filtry v rozsahu 800–1100 nm, který je rutinně používán pro analýzu masa a masných výrobků.

Stanovením sušiny, tuku a bílkovin sýrů Gervais se zabýval Jindřich²¹. K měření NIR spekter 32 vzorků bylo použito přístrojů NIRSystems 6500 a Nicolet Protégé 460, oba s vláknovou optikou. Kalibrace vycházely z 1. derivací spekter s nízkým počtem PLS faktorů. Poněkud lepší parametry vykazovaly kalibrace přístroje Protégé 460.

Analytikou nízkotučných sýrů, ve kterých byl přídavek alginátů a karagenanů pro zlepšení vaznosti vody se zabýval De Santes a spol.²⁹ Núñez-Sánchez a spol.³⁰ porovnali reflektanční měření a vláknovou optiku pro ovčí sýry. Lepší výsledky než měření plátku sýra poskytují nastrouhané vzorky, a to i pro vláknovou optiku.

Stanovením vlhkosti, tuku, bílkovin a kyseliny mléčné v sýrech Danbo se zabývali Sørensen a Jepsen³¹. NIR reflektanční spektra byla snímána ve vlnovém rozsahu 1100 až 2500 nm a transmitanční spektra v rozsahu 800 až 1100 nm. Před kalibrací metodou PLS byly testovány různé úpravy spekter a vybírány části spektra nesoucí charakteristickou informaci. Lepších výsledků bylo dosaženo při měření v transmitanci (kromě kyseliny mléčné). Pro senzorické vlastnosti³² měřené a vyhodnocené stejným způsobem jako předchozí práce³¹ se optimální počet PLS pohyboval mezi hodnotami 3-8. Přesnost výsledků reflektančního měření byla lepší než u transmitance. Korelační koeficient kalibrace obdržený reflektanční technikou se pohyboval v rozmezí 0,86-0,94 u konzistence a v rozmezí 0,52-0,77 u chuťových vlastností. Práce ukázala, že je možné pomocí NIR spektroskopie určovat senzorické vlastnosti, především konzistenční, které mají užší vztah k základnímu složení.

Vedle stanovení základního složení je u sýrů zajímavé sledovat frakce dusíku³³. Jejich stanovení NIR spektroskopií nemusí být vždy úspěšné, jak ukazují např. výsledky založené na měření 107 vzorků sýra Danbo, které byly měřeny jako 2 cm silný plátek v reflektačním modulu spektrometru NIR-Systems 6500.

NIR spektroskopie však neslouží jen k analýzám vyrobených sýrů, může nalézt velmi dobré využití i při řízení výroby sýrů. V nejjednodušším případě poslouží i cenově dostupnější filtrové přístroje³⁴. Transmitanční spektra byla základem pro mezioperační kontrolu sušiny a tuku po odpuštění syrovátky³⁵. Stejné parametry při výrobě sýrů sledovali Hall a De Thomas¹⁹, použili však on-line systém NIRSystems Process Analytics 5500. NIR spektra v rozsahu 700 až 1100 nm byla vyhodnocena MLR a pro stanovení vody a tuku byla *SEP* 0,14 % a 0,23 %. Klenke a Schneemann³⁶ monitorovali transmitančně sušinu nízkotučného tvarohu přístrojem NIRSystems 6500 s průtočnou kyvetou.

Nejzajímavější aplikací v sýrařství je však sledování procesu srážení a určení okamžiku zahájení krájení sýřeniny. Na toto téma bylo v poslední době publikováno několik prací. Sondu vláknové optiky lze umístit přímo v sýrařské vaně, kde probíhá enzymová hydrolýza κ-kaseinu. Pro měření byl použit optický detektor DFA-9500 s optickým filtrem v oblasti 950 nm. Závislost absorbance na čase má sigmoidní průběh a lze ji využít pro určení optimální doby začátku zpracování sraženiny³⁷. Obdobný postup byl použit³⁸ i při monitorování koagulace kozího mléka. Celé reflektanční spektrum (1100 až 2500 nm) pro sledování koagulace mléka pepsinem použili Laporte a spol.³⁹ Spektrální data byla porovnána s údaji z koagulometru s korelačním koeficientem 0,97.

Mnohem méně původních prací je věnováno taveným sýrům. Molt a Kohn⁴⁰ ve své práci studovali kvalitu tavených sýrů sledováním obsahu sušiny, tuku, bílkovin a laktosy. Ke snímání spekter byl použit disperzní přístroj Infratec 1255 v rozsahu 800–1100 nm. PLS kalibrace a validace poskytla tyto výsledné hodnoty: R = 0,997 a *SEP* 0,667 % pro sušinu, R = 0,999 a *SEP* = 0,712 % pro tuk, R = 0,996 a *SEP* = 0,360 % pro bílkoviny a R = 0,985 a *SEP* = 0,444 % pro laktosu. Důležitým aspektem této aplikace je zajištění homogenity měřených tavených sýrů, jak potvrzuje i další práce⁴¹, kde byly sušina a tuk tavených sýrů měřeny na filtrovém přístroji transmitančně a bylo porovnáno několik regresních algoritmů.

3.5. Ostatní mlékárenské výrobky a aplikace

On-line NIR analýza je s výhodou využívána při kontrole obsahu vody v másle³. Přístrojem NIRSystems Proces Analytics 5500 napojeným na výrobní zařízení byla snímána spektra v rozsahu 700 až 1100 nm vláknovou optikou. Kalibrační model pro stanovení vody v másle vytvořený vícenásobnou lineární regresí je charakterizován korelačním koeficientem 0,86 a *SEP* 0,11 %. Nízká hodnota korelačního koeficientu je ovlivněna úzkým koncentračním rozpětím, ve kterém se voda v másle může pohybovat. Data jsou však dobře využitelná pro konstrukci regulačních diagramů.

Pro kvalitu mražených smetanových krémů je důležitá velikost ledových krystalů. On-line měření NIR spektroskopií popsali Windlab a Bolliger⁴² s korelačním koeficientem 0,94. Stanovení sušiny, tuku a bílkovin ve smetanovém krému Pařížanka popsal Jindřich²¹.

Pouliot a spol.⁴³ se zabývali měřením tepelné denaturace syrovátkových bílkovin a stanovením stupně hydrolýzy syrovátkových bílkovin trypsinem. Spektra byla měřena na přístroji NIRSystems 6500 v rozsahu 1100-2500 nm vláknovou optikou. PLS kalibrace a validace poskytla velmi upokojivé výsledky. Zajímavá je aplikace NIR spektroskopie pro stanovení kaseinu a jeho frakcí. Díaz-Carrillo a spol.44 měřili spektra vzorků kozího mléka, které bylo naneseno na filtr ze skelných vláken. Po usušení byl vzorek měřen transmitančně v oblasti 1100-2500 nm, filtr bez vzorku sloužil jako reference. Pro kalibraci byla spektra upravena 1. derivací a zpracována metodou PLS. Díky úpravě vzorku byla práce také úspěšná při stanovení kaseinových frakcí (α_s -, β_s - a κ -kasein), ačkoli se vyskytují v mléce v nízkých koncentracích; kromě toho byla vytvořena kalibrace pro celkový kasein, bílkoviny, tuk a laktosu. NIR spektroskopie může být nástrojem pro sledování porušení mléka (voda, NaCl, odstředěné sušené mléko)45.

Na přístroji NIRSystems 5000 bylo detegováno *Clostridium tyrobutyricum* při zrání polotvrdých sýrů Danbo⁴⁶. Spektroskopická měření byla provedena ve vlnovém rozsahu 1100– 2500 nm v reflektanci. Souběžně s NIR měřením byly plynovou chromatografií sledovány hodnoty volných mastných kyselin, především kyseliny máselné, jejíž koncentrační přírůstek signalizuje máselné duření sýrů. Kalibrační modely byly vypracovány pomocí regresního PLS modelu a validovány křížovou validací (R 0,94; SEP 0,02 %). Vysoký počet PLS faktorů (12) je odůvodnitelný velmi nízkou koncentrací kyseliny máselné (0,01–0,35 %).

4. Závěr

Z uvedeného přehledu je zřejmé, že NIR spektroskopie nachází uplatnění při kontrole výroby i finálních produktů mlékárenských výrobů všech typů. Filtrové přístroje ustupují a jsou nahrazovány zejména FT NIR spektrometry. Rozšiřování NIR spektroskopie napomáhá vývoj v oblasti chemometrických metod pro vyhodnocení spekter a kalibrace a dostupnost výkonné výpočetní techniky. K hlavním výhodám NIR spektroskopie patří² především rychlost – naměření jednoho spektra je otázkou několika sekund nebo nejvýše minut. Samotné měření nevykazuje zvláštní nároky na obsluhující personál a na prostor. Jde o nedestruktivní metodu, která nevyžaduje speciální přípravu vzorku a chemikálie, neprodukuje proto žádný chemický odpad. Na rozdíl od spektroskopie ve střední oblasti je možné měřit přes transparentní obaly. Ideálně se hodí k analýze vzorků s vysokým obsahem vody. Kvalitativní analýza založená na NIR spektrech slouží také k identifikaci či klasifikaci souborů vzorků. NIR spektroskopii ovšem nelze považovat za zcela univerzální metodu. Přes některé nevýhody (nižší citlivost ve srovnání s IR, horší předpoklady pro stanovení obsahu minoritních látek, nutnost poměrně nákladné kalibrace, vysoká pořizovací cena), jsou uvedené výhody předpokladem pro široké využití v praxi5

Metoda NIR spektroskopie umožňuje multikomponentní analýzu různých produktů od kapalných k pevným látkám a osvědčila se jako metoda pro rutinní technologickou kontrolu, kde je rychlost analýzy (např. kontrola meziproduktů) často důležitější než vysoká přesnost. Klasické analytické metody nemohou v současné době splnit nároky na rychlost a množství prováděných rozborů při provozní kontrole mlékárenské technologie.

Tato práce je součástí řešení výzkumného záměru MŠMT CEZ: J19/98 223300005.

LITERATURA

- Rodríguez-Otero J. L., Hermida M., Centero J.: J. Agric. Food Chem. 45, 2815 (1997).
- Novotná M.: Přednáška na Letní škole NIR, Brno, 17.–19. červen 1996.
- Parker E. F.: 6th Int. Conference on Near Infrared Spectroscopy, Lorne, 18–24 April 1994 (Batten G. D., Flinn P. C., Welsh L. A., Blakeney A. B., ed.). Impact Printing, Victoria 1995.
- 4. Wilson R. H.: Spectroscopic Techniques for Food Analysis. VCH Publishers, New York 1994.
- 5. Centner V.: CHEMagazín 9, 22 (1999).
- 6. Esbensen K. H.: *Multivariate Data Analysis in Practise*. Camo AS, Oslo 2000.

- Massart D. L., Vangdeginste B. G. M., Deming S. N., Michotte Y., Kaufman L.: *Chemometrics*. Elsevier, Amsterdam 1988.
- 8. Meir P. C., Zund R. E.: *Statistical Methods in Analytical Chemistry*. John Wiley, New York 1993.
- Blanco M., Coello J., Iturriaga H., Maspoch S., de la Pezuela C.: J. Near Infrared Spectrosc. 5, 67 (1997).
- Zupan J., Gasteiger J.: Anal. Chimica Acta 248, 1 (1991).
 Kukačková O., Čurda L., Jindřich J.: Czech J. Food Sci.
- *18*, 1 (2000). 12. Chen J. Y., Iyo Ch., Kawano S.: J. Near Infrared Spec-
- trosc. 7, 265 (1999).
- Tsenkova R., Itoh K., Natsuga M., Himoto J.: 7th Int. Conference on Near Infrared Spectroscopy, Montreal, 6–11 September 1995 (Davies A. M. C., Williams P., ed.). NIR Publications, Chichester 1995.
- Tsenkova R., Atanassova S., Toyoda K., Ozaki Y., Itoh K., Fearn T.: J. Dairy Sci. 82, 2344 (1999).
- Tsenkova R., Atanassova S., Ozaki Y., Toyoda K.: J. Animal Sci. 78, 515 (2000).
- Kamishikiryo-Yamashita H., Oritani Y., Takamura H., Matoba T.: J. Food Sci. 59, 313 (1994).
- 17. Luinge H. J., Hop E., Lutz E. T. G., van Hemert J. A.: Anal. Chim. Acta 284, 419 (1993).
- Hall J. W., Chan K.: *IDF Seminar, Cork 19–21 April 1993* (Emmons D. B., ed). IDF, Brussels 1994.
- Hall J. W., De Thomas F. A.: *IDF Seminar, Cork 19–21* April 1993 (Emmons D. B., ed). IDF, Brussels 1994.
- 20. Newman D. H.: Food Sci. Technol. Today 8, 161 (1995).
- 21. Jindřich J.: *Diplomová práce*. VŠCHT, Praha 1997.
- 22. Rodríguez-Otero J. L., Hermida M.: J. AOAC Int. 79, 817 (1996).
- 23. Rodríguez-Otero J. L., Centero J., Hermida M.: Milchwissenschaft 52, 196 (1997).
- 24. Martel R., Paquin P.: J. Dairy Sci. 74, 2073 (1991).
- 25. Downey G., Robert P., Bertrand D., Kelly P. M.: Appl. Spectrosc. *44*, 150 (1990).
- Barabássy S. P.; Kaffka K. J.: 6th Int. Conference on Near Infrared Spectroscopy, Lorne, 18–24 April 1994 (Batten G. D., Flinn P. C., Welsh L. A., Blakeney A. B., ed.). Impact Printing, Victoria 1995.
- 27. Rodríguez-Otero J. L., Hermida M., Cepeda A.: J. AOAC Int. 78, 802 (1995).
- Rodríguez-Otero J. L., Veiga M. J., Castano L., Centero J. A., Hermida M.: Milchwissenschaft 53, 503 (1998).
- De Santes D.: 9th Int. Conference on Near Infrared Spectroscopy, Verona, 13–18 June 1999 (Davies A. M. C., Giangiacomo R., ed.), str. 4–61. NIR Publications, Chichester 1999.
- Núñez-Sánchez N., Garrido-Varo A., Serradilla-Manrique J. M., Ares-Cea J. L.: 9th Int.Conference on Near Infrared Spectroscopy, Verona, 13–18 June 1999 (Davies A. M. C., Giangiacomo R., ed.), str. 4–46. NIR Publications, Chichester 1999.
- 31. Sørensen L. K., Jepsen R.: Milchwissenschaft 53, 263 (1998).
- 32. Sørensen L. K., Jepsen R.: Int. Dairy J. 8, 863 (1998).
- 33. Wittrup Ch., Nørgaard L.: J. Dairy Sci. *81*, 1803 (1998).
- Lee S. J., Jeon I. J., Harbers L. H.: J. Food Sci. 62, 53 (1997).
- 35. Mazerolles G.: Lait 80, 371 (2000).

- Klenke M., Schneemann T.: Dtsch. Milchwirtschaft 44, 944 (1993).
- Payne F. A., Hicks C. L., Shen P. S.: J. Dairy Sci. 76, 48 (1993).
- Castillo M., Payne F. A., Hicks C. L., Lopez M. B.: Int. Dairy J. 10, 551 (2000).
- Laporte M. F., Martel R., Paquin P.: Int. Dairy J. 8., 659 (1998).
- 40. Molt K., Kohn S.: Dtsch. Milchwirtschaft 44, 1102 (1993).
- Adams M. J., Latham K., Barnett N. W., Poynton A. J.: J. Sci. Food Agric. 79, 1232 (1999.)
- 42. Windlab E., Bolliger S.: Eur. Food Drink Rev. 1996, 83.
- 43. Pouliot M., Paquin P., Martel R., Gauthier S. F., Pouliot Y.: J. Food Sci. 62, 475 (1997).
- Díaz-Carrillo E., Muñoz-Serrano A., Alonso-Moraga A., Serradilla Manrique J. M.: J. Near Infrared Spectrosc. *1*, 141 (1993).

- 45. Pedretti M., Bertrand D., Semenou M., Robert P., Giangiacomo R.: J. Near Infrared Spectrosc. *1*, 174 (1993).
- 46. Sørensen L. K., Jepsen R.: J. Near Infrared Spectrosc. 5, 91 (1997).

L. Čurda^a, O. Kukačková^a, and M. Novotná^b (^aDepartment of Dairy and Fat Technology, Institute of Chemical Technology, Prague, ^bCentral Laboratories, Institute of Chemical Technology, Prague): Near-infrared Spectroscopy and Its Application to Milk and Dairy Products Analysis

The review deals with the principles of NIR spectroscopy, its instrumentation and techniques of acquisition of NIR spectra. Chemometric methods for evaluation of the spectra as well as advantages and drawbacks of NIR spectroscopy are discussed. The application potential of NIR spectroscopy is demonstrated in the field of dairy products.

NITRIDY HLINÍKU, GALLIA A INDIA JAKO PERSPEKTIVNÍ MATERIÁLY V ELEKTRONICE

JOSEF STEJSKAL^a a JINDŘICH LEITNER^b

^aÚstav anorganické chemie a ^bÚstav inženýrství pevných látek, Vysoká škola chemicko-technologická v Praze, Technická 5, 166 28 Praha 6 e-mail: Josef.Stejskal@vscht.cz

Došlo dne 19.II.2002

Klíčová slova: nitridy hliníku, gallia a india, širokopásové polovodiče, příprava tenkých vrstev metodou MOVPE, termodynamika a kinetika přípravy, aplikace

Obsah

- 1. Úvod
- 2. Strukturní a fyzikální vlastnosti nitridů A^{III}N
- 3. Termodynamické vlastnosti nitridů A^{III}N
- Příprava tenkých vrstev a funkčních struktur nitridů A^{III}N 4.1. Termodynamické aspekty přípravy vrstev
 - nitridů A^{III}N metodou MOVPE
 - 4.2. Kinetické aspekty přípravy vrstev nitridů A^{III}N metodou MOVPE
- 5. Aplikace epitaxních struktur A^{III}N v elektronice
- 6. Závěr

1. Úvod

Intenzivní a systematický výzkum nitridů 3. podskupiny, A^{III}N (A^{III} = Al, Ga, In), jako materiálů pro elektroniku lze datovat od 80. let minulého století. Oproti křemíku a některým frekventovaným polovodivým materiálům typu A^{III}B^V, např. arsenidu gallitému, jde o materiály relativně nové, aplikačně velmi perspektivní. Binární nitridy hliníku, gallia a india a jejich směsné pevné roztoky jsou podskupinou polovodivých materiálů typu A^{III}B^V s některými specifickými chemickými, elektrickými a optickými vlastnostmi, které určují jejich široký aplikační potenciál v současné elektronice. Hodnoty šíře zakázaných pásů energie v rozmezí 1,9 až 6,2 eV (0,6 až 0,2 µm) umožňují konstrukci nekoherentních i koherentních zdrojů záření¹ a fotodetekčních prvků¹ v celé viditelné a ultrafialové oblasti spektra. Některé specifické vlastnosti těchto materiálů, např. chemická a tepelná stabilita, vysoká tepelná vodivost, vysoké hodnoty šíře zakázaných pásů energie (širokopásové polovodiče), stabilita vůči záření, jsou ideální pro konstrukci vysoce výkonných mikrovlnných součástek pro teploty vyšší než 300 °C, např. tranzistorů řízených elektrickým polem MESFET (cit.²) a tranzistorů s vysokou elektronovou pohyblivostí HEMT (cit.³). Materiály jsou vhodné i pro konstrukci planárních optických⁴ a akustických⁵ vlnovodů. Široké aplikační možnosti jsou však provázeny některými technologickými problémy jejich přípravy. Absence ideálních podložek (substrátů) pro přípravu monokrystalických tenkých vrstev a funkčních struktur těchto materiálů je problémem nejzávažnějším.

2. Strukturní a fyzikální vlastnosti nitridů A^{III}N

Binární nitridy hliníku, gallia a india existují převážně v termodynamicky stabilní šesterečné modifikaci strukturního typu wurtzitu ($P 6_3$ mc). Pomocí tzv. nerovnovážných technologických postupů, např. depozicí z molekulárních svazků nebo depozicí z organokovových systémů, lze na kubických podložkách připravit i termodynamicky metastabilní kubickou modifikaci typu sfaleritu ($F \ \overline{4}3m$). Majoritní postavení v aplikacích v elektronice má však modifikace šesterečná. Jde o látky převážně kovalentní s charakteristickou tetraedrickou koordinací v obou strukturních typech, chemicky a tepelně značně inertní. Materiály wurtzitového strukturního typu jsou přímé polovodiče s hodnotou zakázaného pásu energie E_g v rozmezí 1,9 až 6,2 eV (obr. 1). Důležité fyzikální vlastnosti těchto materiálů⁶ jsou uvedeny v tab. I.

3. Termodynamické vlastnosti nitridů A^{III}N

Termodynamická data pro pevný AlN jsou uváděna v řadě tabelárních sbírek, např.^{7–9}, přičemž doporučené hodnoty se prakticky neliší. Data pro GaN a InN z různých zdrojů se naopak liší významně. V tabulce II jsou shrnuta termodynamická data pro pevné nitridy prvků A^{III} uváděná v literatuře.

V poslední době byly publikovány některé nové údaje týkající se termodynamických vlastností pevného GaN. Teplotní závislost molární tepelné kapacity ve tvaru

 ${\rm Obr.~1.}$ Energie zakázaného pásu $E_{\rm g}$ nitridů ${\rm A}^{\rm III}$ N wurtzitového typu a jejich pevných roztoků v závislosti na mřížkovém parametru a

Chem. Listy 96, 311 - 320 (2002)

Tabulka I

I abulka I		
Fyzikální vlastnosti nitrid	ů A ^{III} N wurtzitove	ého typu (cit. ⁶)

Parametr	AlN	GaN	InN
Hustota (298,15 K) [g.cm ⁻³]	3,255	6,81	6,88
Teplota tání [K]	3273	>1973	1373
Mřížkové parametry			
strukturní typ sfalerit, a [nm]	a = 0,433	a = 0,452	a = 0,498
strukturní typ wurtzit, <i>a</i> , <i>c</i> [nm]	a = 0,3112, c = 0,4982	a = 0,3189, c = 0,5185	a = 0,3548, c = 0,5760
Koeficienty teplotní roztažnosti (300 K),			
$\Delta a/a [\mathrm{K}^{-1}]$	$4,2.10^{-6}$	$5,59.10^{-6}$	$4,0.10^{-6}$
$\Delta c/c \ [\mathrm{K}^{-1}]$	$5,3.10^{-6}$	$3,17.10^{-6}$	$3,0.10^{-6}$
Tepelná vodivost (300 K) $[W.cm^{-1}.K^{-1}]$	0,3	1,3	
Zakázaný pás energie (300 K) [eV]	6,2	3,39	1,89
Teplotní koeficient [eV.K ⁻¹]		$-6,0.10^{-4}$	$-1,8.10^{-4}$
Elektrická vodivost (300 K) $[\Omega^{-1}.cm^{-1}]$	$10^{-11} - 10^{-13}$	6–12	$2-3.10^2$
	(nedotovaný	(nedotovaná mono-	(nedotovaný práškový
	monokrystal)	krystalická vrstva)	vzorek)
Elektronová pohyblivost (300 K),		≤440	20–250
$[cm^2.V^{-1}.s^{-1}]$		(nedotovaná mono-	(nedotovaný práškový
		krystalická vrstva)	vzorek)
Index lomu (300 K)	2,15	2,33 (1,22 μm)	2,56 (1 µm)
		2,67 (0,36 µm)	2,93 (0,82 µm)
			3,12 (0,66 µm)
Permitivita, $\varepsilon(0)$	9,14	10,4 (E c)	
		9,5 (E ⊥ c)	
8(∞)	4,84	5,8 (E c)	9,3
		5,35 (E⊥c)	(silně dotovaná tenká vrstva)

Tabulka II

Termodynamická data pro nitridy A^{III}N

A ^{III} N	$\Delta H_{\rm sl}^{\circ}(298 \text{ K})$ $[kJ.mol^{-1}]$	$S_{\rm m}^{\circ}(298 \text{ K})$ [J.K ⁻¹ .mol ⁻¹]	$C^{\circ}_{\mathrm{pm}}(\mathrm{T})$ [J.K ⁻¹ .mol ⁻¹]	$G_{\rm m}^{\circ}(1000~{\rm K})$ $[{\rm kJ.mol}^{-1}]$	Lit.
AlN	-318,402	20,150	$47,823 + 1,849.10^{-3}.T - 1,674.10^{6}/T^{2}$	-358,679	7
GaN	-109,621	29,706	$38,074 + 8,996.10^{-3}.T$	-160,896	7,8
	-150,0	36,5	$27,067 + 32,903.10^{-3}.T - 1,757.10^{5}/T^{2}$	-207,875	10
	-119,39	35,2	$44,377 + 12,602.10^{-3}.T - 1,1728.10^{5}/T^{2}$	-176,984	11
	-114,0	36,493	$52,8635 + 2,6269.10^{-4}.T - 1,5981.10^{6}/T^{2} - 1,4647.10^{-7}.T^{2} + 2,3349.10^{-11}.T^{3}$	-172,986	12
InN	-138,072	43,514	$38,074 + 12,134.10^{-3}.T$	-203,927	7
	-17,154	43,514	$38,074 + 12,134.10^{-3}.T$	- 83,010	8
	-71,0	44,505	$58,7376 + 4,2362.10^{-4}.T - 1,7702.10^{6}/T^{2} - 1,6442.10^{-7}.T^{2} - 1,8308.10^{-11}.T^{3}$	-140,542	12
	-125,0	50,5	$38,074 + 12,134.10^{-3}.T$	-197,342	13

$$C_{\rm pm}^{\circ} = 30,310 + 25,203 \ 10^{-3}.T - 2,856. \ 10^{5}/T^{2} - 6,523.T^{2}$$
(1)

získali Chen a spol.¹⁴ Ranade a spol.¹⁵ stanovili kalorimetricky hodnotu ΔH_{sl}° (GaN, s, 298 K) = -156,8 ± 16,0 kJ.mol⁻¹, která je v rámci chyby měření ve shodě s hodnotou doporučenou Leitnerem a spol.¹⁰

Při zvýšené teplotě se pevné nitridy A^{III}N rozkládají za uvolňování plynného dusíku

$$2 A^{III}N(s) = 2 A^{III}(s,l) + N_2(g)$$
(2)

Stabilita nitridů klesá a rozkladný tlak N₂ roste v řadě AlN \rightarrow GaN \rightarrow InN (obr. 2). Z vypočtených teplotních závislostí rozkladného tlaku vyplývá, že na vzduchu (p(N₂)/ 101,325 kPa = 0,79) se nejméně stabilní nitrid InN začne rozkládat při teplotě cca 878 °C a GaN při teplotě 1040 °C.

Isostrukturní pevné nitridy AlN, GaN a InN se mohou vzájemně mísit, přičemž mísitelnost s ohledem na značné roz-

Tabulka III

Parametry pro termodynamický popis pevného roztoku (Ga,In)N

Metoda	$L^0 (= \Omega)$ [kJ.mol ⁻¹]	L^1 [kJ.mol ⁻¹]	<i>T</i> _c [K]	x _{InN,c}	Lit.
DLP $(K = 1, 15.10^7, \Delta a(sf))$	44,70	_	2688	0,5	19
DLP $(K = 0, 7.10^7, \Delta a(sf))$	27,44	_	1650	0,5	20,21
DLP	29,29	_	1761	0,5	32
DLP ($K = 1,07.10^7, \Delta c(w)$)	17,60	_	1059	0,5	22
Empirická korelace	31,5	3,4	2053	0,43	23
Výpočet deformační energie (modifikovaný VFF model)	25,02	1,44	1505	0,5	25
Výpočet deformační energie (modifikovaný VFF model)	26,59	4,41	1690	0,39	26
Výpočet deformační energie (modifikovaný VFF model)	32,68	_	1965	0,5	27
Výpočet celkové energie LDA – LMTO	52,97	_	3980	0,5	28
Výpočet celkové energie LDA – PP	$48,70^{a}$	_	2447 ^b	_	29
Výpočet celkové energie LDA – PP	25,71 ^a	_	1290 ^b	_	30
Výpočet celkové energie LDA – PP	_	-	1295	-	31

^a
$$\Omega = \Delta E(x_{\text{InN}} = 0.5)/0.25$$
, ^b $T_c = 1.67.\Delta E(x_{\text{InN}} = 0.5)/R$

díly v parametrech elementárních buněk jednotlivých nitridů (tab. I) je v případě (Ga,In)N, (Al,In)N a (Al,Ga,In)N omezená. Jelikož při mísení dochází k substituci pouze mezi atomy prvků A^{III} , lze vyjádřit stechiometrii vznikajícího pevného roztoku vzorcem ($Al_{1-x-y}Ga_xIn_y$)N a pro jeho termodynamický popis užít tzv. podmřížkový model¹⁶. Ten je v tomto případě (substituce omezená pouze na jednu podmřížku) ekvivalentní modelu pseudobinárního (AlN-GaN, GaN-InN, AlN-InN), resp. pseudoternárního (AlN-GaN-InN) substitučního roztoku.

Pro vyjádření směšovací entalpie (ΔH_m^M) pseudobinárních pevných roztoků sloučenin typu $A^{III}B^V$ se sfaleritovou strukturou navrhl Stringfellow^{17,18} semiempirický DLP model. Pro ΔH_m^M platí vztah

$$\Delta H_{\rm m}^{\rm M} = \Omega_{ii} x_i x_i \tag{3}$$

ve kterém Ω_{ij} je tzv. interakční parametr, jehož hodnotu lze získat na základě empirické korelace z rozdílu mřížkových parametrů složek roztoku ve tvaru

$$\Omega_{ij} = 4,375K \frac{(a_i - a_j)^2}{\left(\frac{a_i + a_j}{2}\right)^{4,5}}$$
(4)

Z hlediska entropie je roztok pokládán za ideální ($\Delta S_{\rm m}^{\rm E} = 0$) a formálně je tak tento model shodný s modelem regulárního roztoku. Pro pseudobinární pevné roztoky nitridů A^{III}N wurtzitové struktury byl model DLP v původní nebo modifikované podobě aplikován v řadě prací. Po původní hodnotu $K = 1,52.10^5$ J.mol⁻¹.nm^{-2,5} (cit.^{17,18}) a mřížkové parametry *a* transformované sfaleritové struktury získal Matsuoka¹⁹ hodnoty interakčních parametrů $\Omega_{\rm AIN-GaN} = 4577$ J.mol⁻¹, $\Omega_{\rm AIN-InN} = 77$ 454 J.mol⁻¹ a $\Omega_{\rm GaN-InN} = 44$ 698 J.mol⁻¹. Pro hodnotu $K = 0,92.10^5$ J.mol⁻¹.nm^{-2,5} vyhodnocenou na základě údajů o fázové separaci v (Ga,In)N publikoval Matsuoka^{20,21} hodnoty nižší: $\Omega_{\rm AIN-GaN} = 2812$ J.mol⁻¹, $\Omega_{\rm AIN-InN} = 47$ 555 J.mol⁻¹ a $\Omega_{\rm GaN-InN} = 27$ 443 J.mol⁻¹. Na základě rozdílů mřížkového

Obr. 2. Teplotní závislost rovnovážného tlaku dusíku v soustavách $A^{III}N(s)-A^{III}(s,l)-N_2(g)$; ■ AIN, ● GaN, ◆ InN

parametru *c* wurtzitové struktury pro hodnotu $K = 1,417.10^{5}$ J.mol⁻¹.nm^{-2,5} získali Vigdorovich a Sveshnikov²² sadu parametrů $\Omega_{AIN-GaN} = 3741$ J.mol⁻¹, $\Omega_{AIN-InN} = 37$ 247 J.mol⁻¹ a $\Omega_{GaN-InN} = 17$ 601 J.mol⁻¹.

Pro dodatkovou Gibbsovu energii pseudobinárních pevných roztoků užil Leitner²³ Redlichovu-Kisterovu rovnici ve tvaru

$$\Delta G_{\rm m}^{\rm E} = x_i x_j \sum_{\nu=0}^{p} L_{ij}^{\nu} (x_i - x_j)^{\nu}$$
⁽⁵⁾

přičemž parametry této rovnice L_{ij}^0 a L_{ij}^1 byly získány na základě empirické korelace z relativních rozdílů vzdáleností atomů A^{III} a N ve wurtzitové struktuře příslušných nitridů A^{III}N.

Teoretickým výpočtem deformační energie (rovna směšovací entalpii) pseudobinárního pevného roztoku GaN-InN se

Obr. 3. Oblast omezené mísitelnosti (Ga,In)N vypočtená na základě různých interakčních parametrů uváděných v literatuře; \blacklozenge cit.²³, \Box cit.²⁵, \blacktriangle cit.³², \bigcirc cit.²⁶, \blacksquare cit.^{20,21}

zabývalo několik autorů. Na základě modifikovaného VFF modelu²⁴ vypočetli Ho a Stringfellow²⁵ hodnoty interakčních parametrů pro roztok GaN v InN a roztok InN v GaN. Přepočtem lze získat hodnoty parametrů Redlichovy-Kisterovy rovnice $L^0 = 25\ 020\ \text{J.mol}^{-1}\ a\ L^1 = 1443\ \text{J.mol}^{-1}$. Saito a Arakawa²⁶ získali na základě VFF modelu pro pevný roztok (Ga,In)N interakční parametr závislý na složení: $\Omega_{\text{GaN-InN}} = 31\ 000 - 8830\ x_{\text{InN}}\ (\text{J.mol}^{-1})$. Přepočtem lze získat hodnoty parametrů Redlichovy-Kisterovy rovnice $L^0 = 26\ 590\ \text{J.mol}^{-1}\ a\ L^1 = 4410\ \text{J.mol}^{-1}$. Stejným postupem (model VFF) vypočetli Takayama a spol.²⁷ interakční parametry $\Omega_{\text{AIN-GaN}} = 3012\ \text{J.mol}^{-1}$, $\Omega_{\text{AIN-InN}} = 56\ 484\ \text{J.mol}^{-1}\ a\ \Omega_{\text{GaN-InN}} = 32\ 677\ \text{J.mol}^{-1}$.

Rovněž kvantově-mechanickým výpočtům celkové energie pevného roztoku a příslušných čistých složek byla věnována značná pozornost. Schilfgaarde a spol.²⁸ užili pro výpočet celkové energie v rámci aproximace LDA metodu LMTO, Ito^{29,30}, Teles a spol.³¹ metodu PP. Pro porovnání jednotlivých modelů jsou v tabulce III uvedeny vypočtené hodnoty kritické teploty a kritického složení a na obrázku 3 znázorněny vypočtené hranice oblasti omezené mísitelnosti pevného (Ga,In)N.

Fázové odmíšení (rozpad na dvě fáze různého složení), predikované na základě termodynamických výpočtů pro směsné nitridy obsahující indium – (Ga,In)N, (Al,In)N a (Al,Ga,In)N bylo pozorováno i experimentálně. Lokální fluktuace složení připravených vrstev (Ga,In)N či fázová separace byly pozorovány např. autory^{20,33–36}.

4. Příprava tenkých vrstev a funkčních struktur nitridů A^{III}N

Aplikace materiálů A^{III}N v elektronice je podmíněna přípravou tenkých (10^{-2} – 10^{0} µm) monokrystalických, vysoce čistých nebo záměrně dotovaných vrstev vodivosti typu *n* a *p*. Vrstvením těchto základních jednotek vhodné tloušťky, typu vodivosti a šíře zakázaného pásu energie vznikají složité vrstevnaté struktury požadovaných elektrických a optických pa-

Obr. 4. Základní typy reaktorů užívaných pro přípravu epitaxních vrstev a struktur nitridů A^{III}N metodou MOVPE

rametrů. Obecný postup spočívá ve výběru vhodné, většinou monokrystalické podložky, na které jsou různými technologickými postupy nanášeny cílové vrstevnaté struktury. V současné době existují dva hlavní technologické postupy přípravy vrstevnatých struktur látek A^{III}N. Epitaxní růst z molekulárních svazků (MBE) a epitaxní růst z plynné fáze (VPE). Slovo epitaxe je řeckého původu a znamená orientovaný růst monokrystalické tenké vrstvy na monokrystalické podložce s koincidencí krystalografických směrů a rovin. Proces VPE lze dále dělit podle použitých výchozích látek (prekurzorů).

Hydridová metoda (HVPE) využívá plynné chloridy prvků 3. podskupiny, generované přímo ve zdrojové části reaktoru odpařováním nebo reakcí příslušných prvků s chlorovodíkem. Zdrojem dusíku je plynný amoniak. Metodou HVPE byly v roce 1969 připraveny první monokrystalické vrstvy nitridu gallitého³⁷ a metoda je aplikována a studována i na některých současných pracovištích^{38,39}. Vzhledem k řadě technologických problémů (vysoká rychlost růstu, nevhodnost pro přípravu nitridu hliníku) je však směrována především k přípravě tlustých vrstev nitridu gallitého jako podložek pro následný epitaxní růst.

Nejčastěji aplikovanou metodou přípravy a výroby funkčních epitaxních struktur $A^{III}N$ je metoda MOVPE. Zdrojem prvků A^{III} jsou organokovové sloučeniny typu $A^{III}R_3$ (R =methyl nebo ethyl), zdrojem dusíku je převážně amoniak. Výchozí látky jsou transportovány k vyhřívané podložce, kde dochází k heterogenní chemické reakci, charakterizované zjednodušenou sumární rovnicí

$$A^{III}R_3(g) + NH_3(g) = A^{III}N(s) + 3RH(g)$$
 (6)

Depoziční proces probíhá při teplotách 700 až 1050 °C, při normálním nebo sníženém tlaku ve značném přebytku amoniaku (poměr počátečních látkových množství NH₃ a prvků 3. podskupiny, V/III = $10-10^4$). Polovodivé materiály typu vodivosti *n* a *p* se připravují nejčastěji přídavkem silanu a bis-(cyklopentadienyl)hořečnatého komplexu. První úspěšné po-

Referáty

kusy přípravy kvalitních vrstev A^{III}N metodou MOVPE publikoval v roce 1986 Amano a spol.⁴⁰ Na obr. 4 jsou znázorněny některé depoziční reaktory technologie MOVPE.

Vážným technologickým problémem přípravy kvalitních epitaxních struktur materiálů A^{III}N je nedostatek vhodných podložek, strukturně a tepelně kompatibilních s připravovanými vrstvami. Monokrystalické podložky A^{III}N požadované velikosti a kvality jsou zatím nedostupné. Depoziční proces proto probíhá na podložkách odlišného chemického složení s rozdílným mřížkovým parametrem a koeficientem teplotní roztažnosti (heteroepitaxe). Epitaxní vrstvy A^{III}N wurtzitového typu jsou připravovány na podložkách ze safíru, hexagonálního SiC a ZnO, GaAs rovina (111) a Si rovina (111). I přes značné mřížkové nepřizpůsobení, $(a_{vrstva}-a_{podložka})/a_{vrstva}$, které činí v případě nitridu gallitého až 22 % a rozdílné koeficienty teplotní roztažnosti v rovině epitaxe je nejčastěji aplikovanou podložkou safír rovina (0001) (cit.⁴¹). Důvodem je dostupnost v požadované čistotě, velikosti (desky o průměru až 3 palce) a krystalické kvalitě, hexagonální symetrie a stabilita při teplotách cca 1000 °C. Problém mřížkového nepřizpůsobení a rozdílných koeficientů teplotní roztažnosti je v současné době minimalizován vkládáním mezivrstev nitridu gallitého⁴² nebo nitridu hlinitého⁴³ (tzv. buffer layers) mezi safírovou podložku a první vrstvu funkční epitaxní struktury (viz obr. 5). Amorfní mezivrstvy GaN nebo AlN tloušťky 30 až 90 nm jsou deponovány při nízké teplotě (≈400 °C). Následným zvyšováním teploty na hodnotu ≈1000 °C vznikají polykrystalické vrstvy, vhodné pro následný epitaxní růst. Aplikace těchto mezivrstev podstatně zvyšuje krystalovou kvalitu, povrchovou morfologii a elektrické a optické vlastnosti vrstev. Tímto technologickým postupem jsou dnes připravovány funkční epitaxní struktury pro potřebu optoelektroniky i mikrovlnné techniky.

Příprava vrstev nitridů prvků 3. podskupiny metodou MO-VPE je komplikovaný heterogenní proces, jehož průběh a výsledek ovlivňují faktory termodynamické, transportní a kinetické.

4.1. Termodynamické aspekty přípravy vrstev nitridů A^{III}N metodou MOVPE

Chemická termodynamika může poskytnout řadu cenných informací pro posouzení vlivu depozičních podmínek na složení a kvalitu připravovaných vrstev⁴⁴. Na základě konceptu lokální rovnováhy mezi vznikající pevnou fází a plynnou fází v její bezprostřední blízkosti je možné vymezit oblast vhodných depozičních podmínek, kdy v rovnováze s plynnou fází koexistuje pouze požadovaná pevná fáze (příslušný binární či směsný nitrid) a další kondenzované fáze (např. tavenina prvků A^{III}, karbid Al₄C₃ nebo grafit) jsou termodynamicky nestabilní. V případě vrstev proměnného složení (směsných nitridů) lze dále předpovědět vliv teploty, tlaku a počátečního složení plynné fáze na výsledné složení vrstvy, kterým jsou určeny její elektrické a optické parametry.

Výsledky rovnovážných výpočtů pro systémy A^{III}-N-C-H byly publikovány v řadě prací: AlN (cit.⁴⁵), GaN (cit.^{10,45,46}), InN (cit.⁴⁵), (Al,Ga)N (cit.^{47–50}), (Al,In)N (cit.^{47,51,52}), (Ga,In)N (cit.^{13,47,53–57}) a (Al,Ga,In)N (cit.³²). Jednotlivé práce se liší zejména v počtu fází a látek zahrnutých do výpočtu a pro uvažované látky jsou užívána různá, v některých případech významně odlišná termodynamická data. Někteří autoři zavádějí v rámci termodynamického modelu depozičního procesu jistá omezení, která souvisí s "nízkou" rychlostí určitých chemických reakcí. Jedná se zejména o kinetické omezení rozkladu výchozího amoniaku a vyloučení plynného dusíku N_2 z heterogenních chemických reakcí, které vedou ke vzniku pevných nitridů (tzv. kvazi-rovnovážný model navržený Koukituem a spol.⁵³ a Luem a spol.⁴⁸).

Výsledky rovnovážných výpočtů jsou obvykle prezentovány ve formě depozičních diagramů, ve kterých jsou vyznačeny oblasti existence různých kondenzovaných fází v závislosti na počátečních podmínkách, tj. na teplotě, tlaku a počátečním složení plynné fáze. Složení plynné fáze je obvykle charakterizováno poměrem V/III (poměr výchozích látkových množství amoniaku a prvků A^{III}) a relativním obsahem jednotlivých prvků A^{III}. Pro ilustraci jsou na obr. 6 uvedeny vypočtené depoziční diagramy pro systém Al-Ga-In-N-C-H pro depoziční teploty 700 a 800 °C (cit.⁵⁸).

Z praktického hlediska je rovněž velmi užitečná predikce takových počátečních podmínek, které vedou k požadovanému složení deponované vrstvy. Na obr. 7 jsou znázorněny počáteční koncentrace TMA^{III}, které vedou (za podmínek termodynamické rovnováhy) ke vzniku pevného nitridu $Ga_y(Al_{0.83}In_{0.17})_{1-y}$ N mřížkově přizpůsobeného GaN (cit.⁵⁸). Jelikož složení vznikajících vrstev může být významně ovlivněno i dalšími faktory, a to zejména transportem výchozích látek k povrchu podložky i kinetikou povrchových chemických reakcí, je třeba vypočtené rovnovážné údaje považovat spíše za orientační.

V poslední době bylo publikováno též několik prací věnovaných kvantově-mechanickým výpočtům termodynamických parametrů reakcí probíhajících mezi výchozími látkami v plynné fázi^{59–62}. Výsledkem je posouzení termodynamické stability různých komplexních sloučenin – aduktů a jejich oligomerů a navržení reakčního mechanismu vzniku pevných nitridů A^{III}N.

4.2. Kinetické aspekty přípravy vrstev nitridů A^{III}N metodou MOVPE

Rychlost depozice vrstev pevných nitridů A^{III}N metodou MOVPE je ovlivněna řadou faktorů: transportem výchozích plynných látek k povrchu podložky, kinetikou chemických reakcí probíhajících v objemu plynné fáze, kinetikou dějů na

 $Obr. 5. \begin{subarray}{c} Casový postup přípravy funkční struktury <math display="inline">A^{III}\!N$ na safírové podložce

Chem. Listy 96, 311 - 320 (2002)

povrchu podložky a později deponované vrstvy (adsorpce, desorpce, povrchová chemická reakce) a v nemalé míře i teplotním gradientem mezi vyhřívanou podložkou a chladnými stěnami reaktoru. Závisí tedy nejen na teplotě podložky, celkovém tlaku a počátečním složení plynné fáze, ale i na průto-

Obr. 6. **Depoziční diagramy systému Al-Ga-In-N-C-H** (cit.⁵⁸), relativní tlak $p/p^{\circ} = 1$, V/III = 10⁴, nosný plyn H₂

kové rychlosti plynné fáze reaktorem a geometrii reakčního prostoru. Obecný transportně-kinetický model, který je založen na řešení soustavy parciálních diferenciálních rovnic představujících základní bilanční vztahy pro hybnost, hmotu a energii, byl v literatuře vícekrát popsán a v různé formě aplikován při modelování rychlosti růstu vrstev jiných polovodičů $A^{II}B^V$, zejména GaAs a InP (cit.^{63–68}).

Kinetický, resp. transportně-kinetický model růstu vrstev nitridů A^{III}N v různých typech reaktorů byl zpracován pro AlN (cit.⁶⁹), GaN (cit.^{69–72}) a (Ga,In)N (cit.⁷³). Mechanismus tvorby pevných nitridů je poměrně komplikovaný. Pro případ depozice GaN z TMGa a NH₃ lze chemickou přeměnu výchozích látek znázornit následujícím zjednodušeným schématem (obrázek 8).

Z teplotní závislosti rychlosti růstu vrstev GaN lze usoudit, že v oblasti nižších teplot je depozice GaN řízena kinetikou chemických dějů na povrchu podložky, zatímco v oboru běžně užívaných depozičních teplot (850–1050 °C) je dominantní transport gallia k povrchu podložky. Negativní vliv parazit-

Obr. 7. Systém Al-Ga-In-C-H (cit.⁵⁸), počáteční obsah TMA^{III} v plynné fázi (vztaženo k Σx^{o} (TMA^{III} = 1), který vede k tvorbě nitridu Ga (Al_{0.8}In_{0.17})_{1-y}N mřížkově přizpůsobeného GaN; t =800 °C, $p/p^{o^{y}}$ = 1, V/III = 10 000, nosný plyn N₂, \blacksquare TMAl, \bullet TMGa, \blacktriangle TMIn

Obr. 8. Mechanismus vzniku pevného GaN z výchozích plynných látek TMGa a NH₃; DMGa = (CH₃)₂Ga, MMGa = CH₃Ga

ních homogenních reakcí v plynné fázi na výslednou kinetickou charakteristiku depozičního procesu je významný zejména v případě Al a lze jej částečně omezit snížením tlaku v reaktoru.

5. Aplikace epitaxních struktur A^{III}N v elektronice

Předností všech binárních materiálů $A^{III}N$ a jejich pevných ternárních a kvaternárních roztoků wurtzitového typu (Al,Ga,In)N je skutečnost, že se jedná o tzv. přímé polovodiče – maximum valenčního a minimum vodivostního pásu energie mají stejnou souřadnici vlnového vektoru **k**. Tato vlastnost optimalizuje využití těchto materiálů především v emisních nekoherentních i koherentních optoelektronických součástkách. Vhodným mísením AlN, GaN a InN lze měnit šíři zakázaného pásu energie v rozmezí 1,9 až 6,2 eV (viz obr. 1), a tím i vlnovou délku emitovaného světla v oblasti od žluté do ultrafialové. První modře svítící luminiscenční dioda LED na bázi nitridu gallitého typu MIS byla připravena v r. 1971 (cit.⁷⁴). První luminiscenční dioda na bázi GaN s *p-n* přechodem byla publikována až v roce 1989 (cit.⁷⁵). Funkční struktura na safirové podložce se skládá z nedotované vrstvy GaN vodivosti typu *n* (koncentrace volných nositelů náboje, n = 2.10^{17} cm⁻³), na které je deponována vrstva vodivosti typu *p* dotovaná hořčíkem s chemickou koncentrací hořčíku 2.10^{20} cm⁻³. Struktura byla připravena technologií MOVPE a elektroluminiscence je v blízkosti hrany zakázaného pásu při 375 nm. Konstrukce součástky byla výsledkem několikaletého intenzivního výzkumu přípravy strukturně vysoce kvalitních epitaxních vrstev vodivosti typu p. Optimalizace strukturních parametrů byla dosažena aplikací tzv. mezivrstev GaN nebo AlN. Nízkoodporový p typ vodivosti epitaxních vrstev dotovaných hořčíkem byl získán nízkoenergetickým elektronovým bombardováním nebo žíháním v dusíku75.

Podstatné zlepšení emisních vlastností elektroluminiscenčních diod na bázi A^{III}N přinesla aplikace tzv. dvojité hetero-

Obr. 9. Řez dvojitou epitaxní heterostrukturou GaN/(Ga,In)N pro elektroluminiscenční diody

Obr. 10. Řez epitaxní strukturou GaN/AIN pro tranzistory řízené elektrickým polem

struktury⁷⁶. Na obrázku 9 je schematicky znázorněna dvojitá heterostruktura s aktivní (emitující) vrstvou (Ga,In)N. Struktura byla připravena technologií MOVPE na safírové podložce. Vrstvy GaN a Ga_{0.8}In_{0.2}N vodivosti typu *n* byly dotovány křemíkem, vrstva GaN typu *p* hořčíkem. Maximum elektroluminiscence bylo při vlnové délce 440 nm. Toto řazení jednotlivých epitaxních vrstev v heterostruktuře optimalizuje jak samotný rekombinační proces, tak i optické, popř. světlovodné vlastnosti celé struktury. V r. 1993 byly vyráběny modré luminiscenční diody na bázi GaN s účinností 2,75 % (Nichia Chemical Co.). Dnes jsou běžně dostupné modré, zelené a žluté diody s účinností až 13 % (cit.⁷⁷).

V případě konstrukce koherentních zdrojů záření (laserové diody) na bázi látek A^{III}N rostou především požadavky na strukturní kvalitu připravovaných epitaxních vrstev. Podstatně složitější jsou i funkční epitaxní struktury jako celek. Běžná hustota dislokací ve funkčních vrstvách na safírové položce s aplikací jedné mezivrstvy je 10⁹ až 10¹⁰ cm⁻². Tato koncentrace je ještě přijatelná pro konstrukci elektroluminiscenčních diod, ale podstatně redukuje dobu života diod laserových. Problém je řešen např. několikanásobným vkládáním nízkoteplotní mezivrstvy mezi vysokoteplotní funkční vrstvy A^{III}N (cit.⁷⁷).

První injekční laserové diody na bázi materiálů A^{III}N byly demonstrovány Nakamurou a spol.⁷⁸ v roce 1996. Aktivní oblast tvoří soubor velice tenkých, střídavě deponovaných vrstev In_{0,20}Ga_{0,80}N (2,5 nm) a In_{0,05}Ga_{0,95}N (5,0 nm), které speciálním způsobem modulují průběh potenciálu (MQW). Laserové diody rozměru 30 μ m × 1500 μ m pracují při pokojové teplotě v pulzním režimu s prahovým proudem 4 kA.cm⁻². Emitovaná vlnová délka je 417 nm. Na bázi heterostruktury (Ga,In)N/(Ga,In)N byl připraven i laser⁷⁹, který pracuje v kontinuálním režimu až do teploty –40 °C při prahovém proudu 8,7 kA.cm⁻² (emise při 411 nm). Perspektivní aplikace širokopásových laserových diod je směrována hlavně do oblasti zpracování digitálních informací.

Mikrovlnné součástky na bázi širokopásových materiálů A^{III}N jsou konstruovány s cílem dosažení vysokých výkonů, uplatnění ve vysokoteplotní elektronice a možnosti pracovat v chemicky agresivních prostředích. Na rozdíl od emisních optoelektronických součástek se základní heterostrukturou GaN/(Ga,In)N jsou mikrovlnné součástky, převážně tranzistory řízené elektrickým polem (HEMT, MESFET, MODFET), konstruovány na bázi heterostruktury GaN/(Al,Ga)N. Důvodem je vysoká tepelná stabilita všech chemických komponent až do teploty 1000 °C a dielektrické vlastnosti nitridu hlinitého. Na obrázku 10 je schematicky znázorněn řez epitaxní struktury tranzistoru řízeného elektrickým polem MESFET. Struktura, připravená technologií MOVPE se skládá ze safírové podložky, izolační vrstvy AlN, vrstvy GaN vodivosti typu n a ohmických kontaktů z titanu. Přípravu tranzistoru FET s heterostrukturou AlGaN/GaN, který pracuje při teplotě 300 °C, publikovali Khan a spol.⁸⁰ Mezní frekvence až 77,5 GHz byla dosažena u tranzistorů s modulovanou dotací (MODFET) (cit.¹).

6. Závěr

Lze konstatovat, že v současné době jsou komerčně dostupné modré, modrozelené, zelené i žluté elektroluminiscenční diody, např. Nichia Chemical Co., Toyota Gosei nebo Siemens pro potřebu barevných zobrazovacích prvků. Funkční epitaxní struktury se vyrábějí převážně technologií MO-VPE na safírových podložkách s aplikací mezivrstev nitridu gallitého nebo hlinitého.

Intenzivně se studuje příprava koherentních zdrojů záření (laserů) požadovaných výkonů, životnosti až 10^4 hodin, které pracují v kontinuálním režimu a jsou perspektivní pro potřebu zpracování digitálních dat. Výzkum v této oblasti sleduje přípravu složitých epitaxních struktur s tzv. kvantovými jámami, zlepšení strukturních parametrů, kvalitu přechodů *p-n* a hledání optimálních podložek pro epitaxní růst.

Vysoce perspektivní jsou i epitaxní struktury látek A^{III}N pro potřebu mikrovlnné techniky. Tranzistory řízené elektrickým polem nacházejí uplatnění ve výkonové elektronice, při teplotách vyšších než 400 °C a v chemicky agresivních prostředích.

Při všech těchto aplikacích jsou kladeny vysoké požadavky na strukturní kvalitu deponovaných vrstev, homogenitu jejich tloušťky a složení. K hlubšímu pochopení fyzikálních a chemických dějů, které tyto vlastnosti určují, probíhá paralelně s rozvojem vlastní technologie i intenzivní teoretický výzkum směrovaný do oblasti termodynamiky a kinetiky procesu MOVPE.

Seznam zkratek převzatých z anglosaské literatury

DLP	Delta Lattice Parameter
HEMT	High Electron Mobility Transistor
HVPE	Hydride Vapor Phase Epitaxy
LDA	Local Density Approximation
LED	Light Emitting Diode
LMTO	Linear Muffin Tin Orbital
MBE	Molecular Beam Epitaxy
MESFET	Metal-Semiconductor Field Effect Transistor
MIS	Metal Insulator Semiconductor
MODFET	Modulation-Doped Field Effect Transistor
MOVPE	Metalorganic Vapor Phase Epitaxy
MQW	Multiple Quantum Well
PP	Pseudopotential
VFF	Valence Force Field
VPE	Vapor Phase Epitaxy

Tato práce vznikla za finanční podpory Grantové agentury ČR v rámci projektu č. 104/00/0572.

LITERATURA

- 1. Dupuis R. D.: J. Cryst. Growth 178, 56 (1997).
- 2. Matsuoka T., Ohki A., Ohno T., Kawaguchi Y.: J. Cryst. Growth *138*, 727 (1994).
- Khan M. A., Bhattari A., Kuznija J. N., Olson D. T.: Appl. Phys. Lett. 63, 1214 (1993).
- Skalský M., Janta J., Čtyroký J., Stejskal J., Hüttel I.: Optické komunikace O.K.'2001, Praha, 6.–7.11.2001. Sborník (Kucharski M., ed.), str. 81.
- Okano H., Tanaka N., Takahashi Y., Tanaka T., Shibata K., Nakano S.: Appl. Phys.Lett. 64, 166 (1994).
- 6. Madelung O., ed.: Data in Science and Technology, Se-

miconductors, Group IV Elements and III–V Compounds. Springer, Berlin 1991.

- Knacke O., Kubaschewski O., Hesselmann K.: *Thermochemical Properties of Inorganic Substances*, 2. vyd. Springer, Berlin 1991.
- 8. Barin I.: *Thermochemical Data of Pure Substances*, 2. vyd., VCH, Weinheim 1993.
- Chase M. V., ed.: *NIST-JANAF Thermochemical Tables*,
 vyd. (J. Phys. Chem. Ref. Data, Monograph No. 9). ACS-AIP-NIST, New York 1998.
- Leitner J., Stejskal J., Voňka P.: Mater. Lett. 28, 197 (1996).
- Davydov A. V., Anderson T. J.: Proc. Electrochem. Soc., 98–18 (III–V Nitride Materials and Processing).
- 12. Przhevalskii I. N., Karpov S. Yu., Makarov Yu. N.: MRS Internet J. Nitride Semicond. Res. *3*, 30 (1998).
- 13. Leitner J., Stejskal J.: Mater. Lett. 35, 85 (1998).
- Chen X., Lan Y., Liang J., Cheng X., Xu Y., Xu T., Jiang P., Lu K.: Chin. Phys. Lett. *16*, 107 (1999).
- Ranade M. R., Tessier F., Navrotsky A., Leppert V. J., Risbud S. H., DiSalvo F. J., Balkas C. M.: J. Phys. Chem. B 104, 4060 (2000).
- Hillert M., Staffansson L.-I.: Acta Chem. Scand. 24, 3618 (1970).
- 17. Stringfellow G. B.: J. Phys. Chem. Solids 34, 1749 (1973).
- 18. Stringfellow G. B.: J. Cryst. Growth 27, 21 (1974).
- 19. Matsuoka T.: Appl. Phys. Lett. 71, 105 (1997).
- 20. Matsuoka T.: J. Cryst. Growth 189/190, 19 (1998).
- 21. Matsuoka T.: MRS Internet J. Nitride Semicond. Res. 3, 54 (1998).
- 22. Vigdorovich E. N., Sveshnikov Yu. N.: Neorg. Mater. *36*, 568 (2000).
- 23. Leitner J.: J. Phys. Chem. Solids 58, 1329 (1997).
- 24. Keating P. N.: Phys. Rev. 145, 637 (1966).
- 25. Ho I., Stringfellow G. B.: Appl. Phys. Lett. 69, 2701 (1996).
- Saito T., Arakawa Y.: Phys. Rev. B: Solid State 60, 1701 (1999).
- 27. Takayama T., Yuri M., Itoh K., Baba T., Harris J. S., Jr.: J. Cryst. Growth 222, 29 (2001).
- 28. Van Schilfgaarde M., Sher A., Chen A.-B.: J. Cryst. Growth 178, 8 (1997).
- 29. Ito T.: Jpn. J. Appl. Phys., Part 2 36, L1065 (1997).
- 30. Ito T.: Phys. Status Solidi B 217, R7 (2000).
- Teles L. K., Furthmüller J., Scolfaro L. M. R., Leite J. R., Bechstedt F.: Phys. Rev. B: Solid State 62, 2475 (2000).
- 32. Koukitu A., Kumagai Y., Seki H.: J. Cryst. Growth 221, 743 (2000).
- Chalker P. R., Morrice D., Joyce T. B., Noakes T. C. Q., Bailey P., Considine L.: Diamond Relat. Mater. 9, 520 (2000).
- Cho H. K., Lee J. Y., Kim K. S., Yang G. M.: J. Cryst. Growth 220, 197 (2000).
- Gerthsen D., Hahn E., Neubauer B., Rosenauer A., Schön O., Heuken M., Rizzi A.: Phys. Status Solidi A 177, 145 (2000).
- Kaschner A., Hoffmann A., Thomsen C., Böttcher T., Einfeldt S., Hommel D.: Phys. Status Solidi A 177, R4 (2000).
- 37. Maruska H. P., Tietjen J. J.: Appl. Phys. Lett. 15, 327 (1969).

- Paskova T., Paskov P. P., Darakchieva V., Tungasmita S., Birch J., Monemar B.: Phys. Status Solidi A *181*, 197 (2001).
- Visconti P., Jones K. M., Reshchikov M. A., Yun F., Cingolani R., Morkoc H., Park S. S., Lee K. Y.: Appl. Phys. Lett. 77, 3743 (2000).
- Amano H., Swakai N., Akasaki I., Toyoda Y.: Appl. Phys. Lett. 48, 353 (1986).
- 41. Strite S., Morkoc H.: J. Vac. Sci. Technol., B 10, 1237 (1992).
- 42. Nakamura S., Mukai T., Senoh M.: Jpn. J. Appl. Phys., Part 2 32, L16 (1993).
- 43. Akasaki I., Amano H., Koide Y., Hiramatsu K., Sawaki J.: J. Cryst. Growth 98, 209 (1989).
- 44. Stringfellow G. B.: J. Cryst. Growth 62, 225 (1983).
- 45. Koukitu A., Takahashi N., Seki H.: Jpn. J. Appl. Phys., Part 2 *36*, L1136 (1997).
- 46. Li C., Du Z., Zhang W.: CALPHAD 24, 169 (2000).
- 47. Koukitu A., Seki H.: Jpn. J. Appl. Phys., Part 2 35, L1638 (1996).
- 48. Lu D., Duan S: Chin. J. Semicond. 20, 1026 (1999).
- Leitner J., Stejskal J., Voňka P.: Chem. Listy 94, 947 (2000).
- 50. Lu D., Duan S.: J. Cryst. Growth 208, 73 (2000).
- 51. Koukitu A., Kumagai Y., Seki H.: Phys. Status Solidi A *180*, 115 (2000).
- 52. Lu D., Duan S.: Chin. J. Semicond. 21, 729 (2000).
- 53. Koukitu A., Takahashi N., Taki T., Seki H.: Jpn. J. Appl. Phys., Part 2 *35*, L673 (1996).
- 54. Koukitu A., Takahashi N., Taki T., Seki H.: J. Cryst. Growth 170, 306 (1997).
- 55. Koukitu A., Seki H.: J. Cryst. Growth 189/190, 13 (1998).
- 56. Asai T., Dandy D. S.: J. Appl. Phys. 88, 4407 (2000).
- 57. Lu D., Duan S.: Chin. J. Semicond. 21, 105 (2000).
- Leitner J., Stejskal J., Voňka P., Hulicius E., Šimeček T.: European Workshop MOVPE IX, Wrexham, 10.–13.6. 2001, Book of Abstracts, str. 96.
- 59. Nakamura K., Makino O., Tachibana A., Matsumoto K.: J. Organomet. Chem. *611*, 514 (2000).
- Cardelino B. H., Moore C. E., Cardelino C. A., Frazier D. O., Bachmann K. J.: J. Phys. Chem. A 105, 849 (2001).
- 61. Timoshkin A. Y., Bettinger H. F., Schaefer III H. F.: Phys. Chem. A *105*, 3240 (2001).
- 62. Timoshkin A. Y., Bettinger H. F., Schaefer III H. F.: Phys. Chem. A *105*, 3249 (2001).
- 63. Ouazzani J., Chiu K.-Ch., Rosenberger F.: J. Cryst. Growth *91*, 497 (1988).
- 64. Tirtowidjojo M., Pollard R.: J. Cryst. Growth 93, 108 (1988).
- 65. Jensen K. F.: J. Cryst. Growth 98, 148 (1989).
- Ouazzani J., Rosenberger F.: J. Cryst. Growth 100, 545 (1990).
- Mountziaris T. J., Jensen K. F.: J. Electrochem. Soc. 138, 2626 (1991).
- Theodoropoulos C., Ingle N. K., Mountziaris T. J., Chen Z.-Y., Liu P. L., Kioseoglu G., Petrou A.: J. Electrochem. Soc. 142, 2086 (1995).
- Mihopoulos T. G., Gupta V., Jensen K. F.: J. Cryst. Growth 195, 733 (1998).
- Safvi S. A., Redwing J. M., Tischler M. A., Kuech T. F.: J. Electrochem. Soc. 144, 1789 (1997).

Chem. Listy 96, 311 - 320 (2002)

- Karpov S. Yu., Prokofyev V. G., Yakovlev E. V., Talalaev R. A., Makarov Yu. N.: MRS Internet J. Nitride Semicond. Res. 4, 4 (1999).
- Pawlowski R. P., Theodoropoulos C., Salinger A. G., Mountziaris T. J., Moffat H. K., Shadid J. N., Trush E. J.: J. Cryst. Growth 221, 622 (2000).
- Talalaev R. A., Yakovlev E. V., Karpov S. Yu., Makarov Yu. N., Schoen O., Heuken M., Strauch G., Juergensen H.: MRS Internet J. Nitride Semicond. Res. 4, 5 (1999).
- 74. Pankove J. I., Miller E. A., Richman D., Berkeyheiser J.: J. Lumin. 4, 63 (1971).
- 75. Amano H., Kito M., Hiramatsu K., Akasaki I.: Jpn. J. Appl. Phys., Part 2 28, L2112 (1989).
- Nakamura S., Kito M., Senoh M.: Jpn. J. Appl. Phys. 30, L1998 (1991).
- 77. Akasaki I.: Mater. Sci. Eng., B 74, 101 (2000).
- Nakamura S., Senoh M., Nagahama S., Iwasa N., Yamada T., Matsushita T., Kiyoku H., Sugimoto Y.: Jpn. J. Appl. Phys., Part 2 *35*, L74 (1996).
- 79. Nakamura S., Senoh M., Nagahama S., Iwasa N., Yama-

Referáty

da T., Matsushita T., Sugimoto Y., Kiyoku H.: Appl. Phys. Lett. 69, 3034 (1996).

 Khan M. A., Shur M. S., Kuznia J. N., Burm J., Schaff W.: Appl. Phys. Lett. 66, 1083 (1995).

J. Stejskal^a and J. Leitner^b (^aDepartment of Inorganic Chemistry, ^bDepartment of Solid State Engineering, Institute of Chemical Technology, Prague): Aluminium, Gallium and Indium Nitrides – Advanced Materials in Electronics

Structure and physical properties of the A^{III} nitrides and their solid solutions are reviewed. Thermodynamic parameters of the binary nitrides as well as of the ternary solid solutions are summarized and discussed. Various methods of deposition of epitaxial layers and structures of these materials are described. The metal organic vapor phase epitaxy as the leading epitaxial technology is presented in detail including the thermodynamic and kinetic aspects of the A^{III} nitrides growth. Current optoelectronic and microwave applications of the nitrides are briefly mentioned. Chem. Listy 96, 311 - 320 (2002)

Referáty

INTERAKCE BIOMATERIÁLŮ SE SIMULOVANÝM TĚLNÍM PROSTŘEDÍM

JAKUB STRNAD, ALENA SKRČENÁ, JIŘÍ PROTIVÍNSKÝ a ALEŠ HELEBRANT

Ústav skla a keramiky, Vysoká škola chemicko-technologická v Praze, Technická 5, 166 28 Praha 6 e-mail: ales.helebrant@vscht.cz

Došlo dne 1.III.2002

Klíčová slova: biomateriály, hydroxyapatit, titan, křemenné sklo

Obsah

- 1. Úvod
- 2. Materiály a metody
- 3. Výsledky
- 4. Diskuse
- 5. Závěr

1. Úvod

Jako bioaktivní se označují materiály (bioskla, některé druhy sklokeramiky, chemicky upravený titan), jež vytvářejí vazbu s kostní tkání prostřednictvím vrstvy kostního apatitu, která se tvoří na jejich povrchu po implantaci¹. Proces nukleace a růst krystalů apatitu je iniciován iontovou interakcí mezi bioaktivním materiálem a krví a může být reprodukován v simulované tělní tekutině (SBF – Simulated Body Fluid) (cit.²).

Expozice v SBF je nejčastěji prováděna jako statický experiment, kdy je vzorek umístěn v roztoku o konstantním objemu, nebo je roztok periodicky obnovován³. Je-li poměr povrchu vzorku k objemu roztoku (S/V) dostatečně nízký k udržení konstantních podmínek během expozice, lze obtížně detegovat změny ve složení roztoku způsobené interakcí materiál–SBF. V případě vysokého poměru S/V jsou koncentrační změny měřitelné, dochází však ke změně složení roztoku a ke snížení hnací síly pro nukleaci a růst krystalů apatitu v důsledku přechodu iontů z roztoku do pevné fáze⁴. Statická expozice také méně odpovídá podmínkám při implantaci, kde vždy dochází k proudění tělní tekutiny podél povrchu implantátu.

Lze předpokládat, že dynamické uspořádání expozice (tj. v proudící kapalině) poskytne konstantní podmínky interakce materiál–SBF a umožní detekci změn ve složení roztoku během prvních fází interakce.

Cílem práce bylo navrhnout testovací metodu pro biomateriály, která by lépe simulovala interakci mezi povrchem implantátu a tělními tekutinami než dosud používané testy a ověřit schopnost této metody rozlišit materiály bioaktivní a bioinertní.

2. Materiály a metody

Při experimentech byly použity vzorky bioaktivního titanu (Ti-bio), gelu TiO₂, slinovaného syntetického hydroxyapatitu (HA1100) a sušeného hydroxyapatitu (HA120). Jako referenční vzorky byly použity obrobený čistý titan (c.p. Ti, grade 3) a drť křemenného skla. Ti-bio vzorky byly připraveny jako třísky z obrábění, omyty v isopropylalkoholu v ultrazvukové myčce, vysušeny na 120 °C, leptány v 2% HF a následně 12 hodin v 5 M-NaOH při 60 °C. Titaničitý gel byl připraven smísením tetrabutyl-orthotitanátu s ethanolem, vodou a kyselinou chlorovodíkovou v molárním poměru 1:47:0,57:0,11. Následně byl vysušen při teplotě 135 °C. Před interakcí s SBF nebyl gel nijak chemicky upravován. Vzorky čistého titanu (Ti) byly ve formě třísek z obrábění, omyté v isopropylalkoholu bez další povrchové úpravy. Vzorky hydroxyapatitu byly připraveny srážením z vodného roztoku a sušením při teplotě 120 °C (HA120) nebo následně slinováním při 1100 °C (HA1100). Zrnitost drtí byla v rozsahu 0,6-1 mm. Velikost povrchu vzorků byla určena adsorpcí kryptonu (vyhodnocení metodou B.E.T). Vzorky bioaktivního titanu (Ti-bio) vykázaly řádově vyšší velikost povrchu (0,4392 m 2 g $^{-1}$) než vzorky čistého titanu (0,013 m².g⁻¹). Rovněž vzorek drtě HA120 (93,69 m².g⁻¹) měl významně větší povrch než slinovaný vzorek HA1100 (0,002 m².g⁻¹). U vzorků hydroxyapatitu byla rovněž určena porozita rtuťovou porozimetrií (HA120-65 %, HA1100-7 %).

Vzorky byly exponovány v roztoku SBF, který byl připraven z následujících chemikálií: KCl, NaCl, NaHCO₃, MgSO₄.7H₂O, CaCl₂, TRIS, NaN₃, KH₂PO₄. Roztok obsahoval 142 mmol.I⁻¹ Na⁺, 5 mmol.I⁻¹ K⁺, 2,5 mmol.I⁻¹ Ca²⁺, 1 mmol.I⁻¹ Mg²⁺, 131 mmol.I⁻¹ Cl⁻, 5 mmol.I⁻¹ HCO₃⁻, 1 mmol.I⁻¹ SO₄²⁻, 1 mmol.I⁻¹ HPO₄²⁻. Tlumící roztok TRIS byl použit k nastavení pH na 7,55–7,60 při 25 °C a azid sodný k inhibici bakteriálního růstu. Vzorky byly exponovány v průtočné cele, kterou protékal konstantním průtokem 0,042 ml.min⁻¹ roztok SBF předehřátý na 37 °C (obr. 1). Vzorky roztoku na výstupu z cely byly odebírány k analýze koncentrace iontů Ca²⁺ atomovou absorpční spektroskopií a iontů PO₄³⁻ spektro-

Obr. 1. Experimentální uspořádání průtočného testu

Obr. 2. Časová závislost koncentrace iontů $Ca^{2+} a PO_4^{3-} (mg,\Gamma^1)$ v roztoku SBF na výstupu z cely při expozici vzorků čistého titanu (c.p.Ti), bioaktivního titanu (Ti-bio) a gelu TiO₂ s označením tří fází interakce (I, II, III); \blacklozenge Ti-bio, + c.p.Ti, \blacksquare gel TiO₂

fotometricky. Po expozici byla provedena povrchová analýza vzorků elektronovou mikrosondou (SEM-EDS).

3. Výsledky

Na časových závislostech koncentrace iontů $Ca^{2+} a PO_4^{-}$ změřených na výtoku z cely při expozici vzorků Ti-bio bylo možné sledovat tři hlavní fáze (obr. 2). Na počátku interakce materiálu s roztokem došlo k rychlému, avšak dočasnému poklesu koncentrací obou iontů v SBF. Během druhé fáze došlo k návratu koncentrací přibližně na původní hodnoty (100 mg.l⁻¹ Ca²⁺, 88 mg.l⁻¹ PO₄³⁻). Po indukční době přibližně 25 hodin byl detegován další pokles koncentrace, který se zastavil na hodnotě 60–63 mg.l⁻¹ PO₄³⁻. Toto ustálení poklesu indikovalo spotřebu iontů z roztoku konstantní rychlostí, způsobenou růstem krystalů kostního apatitu. Křivka pro gel TiO₂ ukazuje pokles a následný vzestup obou koncentrace obou stanovovaných prvků na zhruba konstantní hodnotě 91–92 mg.l⁻¹.

Během expozice bioinertních vzorků (čistý titan, křemenné sklo) nebyly detegovány žádné významné rozdíly vstupních a výstupních koncentrací iontů Ca^{2+} a PO_4^{3-} (obr. 2).

Časové závislosti změřené při expozici vzorků hydroxyapatitu (HA120 a HA1100) vykazovaly podobný průběh jako při expozici vzorků Ti-bio, avšak k precipitaci kostního apatitu docházelo po kratších indukčních dobách a významný počáteční pokles a následný vzrůst koncentrace sledovaných složek zaznamenán nebyl (obr. 3).

Obr. 3. Časová závislost koncentrace iontů PO_4^{3-} (mg. Γ^1) v roztoku SBF na výstupu z cely při expozici vzorků hydroxyapatitu; \blacklozenge HA120 a – HA1100

Obr. 4. Snímek apatitových sférolitů vytvořených na povrchu bioaktivního titanu po 74 hodinách expozice v SBF (SEM, zvětšení 1000)

Obr. 5. Snímek povrchu gelu TiO $_2$ po 72 hodinách expozice v SBF (SEM, zvětšení 1000)

Vzorky titanu exponované v SBF byly analyzovány pomocí SEM-EDS. Apatitové krystaly vytvořené na povrchu vzorku Ti-bio ukazuje obr. 4. V tabulce I jsou shrnuty výsledky analýzy SEM-EDS pro vzorky Ti-bio, c.p.Ti a a gelu TiO₂ po expozici v roztoku SBF. Pro vzorek Ti-bio z ní vyplývá poměr Ca/P rovný 1,74. Tato hodnota je blízká poměru Ca/P v hydroxyapatitu. Tabulka I

Množství vápníku a fosforu (at.%) detegované na povrchu vzorků c.p.Ti, Ti-bio a gelu TiO₂ po 2 minutách, 20 a 74 hodinách expozice v SBF (SEM-EDS, zbytkové prvky jsou titan a kyslík)

Čas	Ti	-Bio	c.p	o. Ti	Gel	TiO ₂
	Ca	Р	Са	Р	Ca	Р
2 min	1,4	ND ^a	ND ^a	ND ^a	_	_
20 h	6,7	0,7	ND^{a}	ND^{a}	_	_
74 h	23,0	13,2	-	-	22,6	0,0

^a Hodnoty nebyly stanoveny

Také povrch gelu TiO_2 byl sledován pomocí metody SEM a EDS. Mikroanalýzou bylo stanoveno množství vápníku a fosforu na jeho povrchu po expozici v SBF (obr. 5, tab. I).

4. Diskuse

V případě vzorků Ti-bio ukazovaly měřené křivky časové závislosti výstupní koncentrace z cely významné zachycení vápenatých a fosforečnanových iontů povrchem vzorku (obr. 2). To může být způsobeno iontovou adsorpcí na povrch hydratované gelové vrstvy TiO2 vytvořené úpravou vzorku v alkalickém prostředí. Toto zjištění je v souladu s výsledky Kokuba a spol.², kteří detegovali elektronovou mikroanalýzou vápník na povrchu alkalicky upraveného titanu již po 0,5 h expozice v SBF. Přítomnost vápníku a stop fosforu na povrchu vzorků Ti-bio byla potvrzena i elektronovou mikroanalýzou (tab. I). Podstatný pokles koncentrace v SBF v případě Ti-bio v porovnání s čistým titanem může být způsoben přibližně o 2 řády větším povrchem vzorku Ti-bio interagujícího s SBF. Elektronová mikroanalýza však nepotvrdila přítomnost vápníku na povrchu čistého titanu po 2 minutách ani po 20 hodinách (tab. I), a ani po 74 hodinách nedošlo k precipitaci kostního apatitu. Podobné inertní chování vykazoval při expozici v SBF i vzorek křemenného skla.

Analýza roztoku v průběhu interakce gelu TiO2 ukázala v počátečním stadiu úbytek iontů Ca^{2+} i PO_4^{3-} (obr. 2), který nasvědčoval tomu, že došlo k adsorpci vápenatých a fosforečnanových iontů z roztoku na povrch gelu. Elektronovou mikroanalýzou byl ale na povrchu gelu detegován pouze ion Ca²⁺. Vzhledem k tomu, že nebyl detegován žádný fosfor, předpokládáme, že doba expozice nebyla dostatečná k vytvoření nukleí HA. Tento fakt naznačuje buď srážení fosforečnanů mimo povrch vzorku, případně na místě, které nebylo analyzováno elektronovým paprskem. Je ovšem nutno mít na paměti i skutečnost, že při dynamickém testu bylo použito nízkého průtoku (0,042 ml.h⁻¹), a tak bylo pro analýzu změn v SBF k dispozici velmi malé množství roztoku. Pro spektrofotometrické stanovení bylo nutno ještě toto množství zředit. Absorbance tak byla měřena na hranici stanovitelnosti a zjištěná koncentrace iontů PO_4^{3-} může být zatížena značnou chybou. Jednoznačně je ovšem možné říci, že po adsorpci iontů nenastala ve sledovaném časovém období nukleace HA na povrchu vzorku. Tento fakt je v souladu se závěry předchozí práce⁶,

Referáty

Obr. 6. Časová závislost množství iontů PO_4^{3-} (mg) spotřebovaných při precipitaci apatitu na povrchu vzorku Ti-bio

Obr. 7. Časová závislost hmotnosti iontů PO₄^{3−} (mg) spotřebovaných při precipitaci apatitu na povrchu vzorků; – HA120 a ♦ HA1100

která ukázala, že na srážení HA na povrchu materiálů má větší význam jeho schopnost zvýšit lokální přesycení u povrchu než samotná schopnost adsorpce složek z roztoku.

Rychlá iontová adsorpce byla také detegována v případě vzorků HA120 a HA1100. Indukční čas, po kterém nastal růst krystalů kostního apatitu, byl však v tomto případě podstatně kratší než v případě vzorků Ti-bio, kde je tato hodnota 24,5 h. Indukční časy pro HA120 a HA1100 jsou 3,8 h, respektive 2,5 h. Lze předpokládat, že rychlá iontová adsorpce vápenatých a fosforečnanových iontů může být první fází procesu tvorby vazby mezi bioaktivním materiálem a kostní tkání. Indukční čas, charakterizující rychlost nukleace HA, po kterém začíná růst krystalů kostního minerálu, závisí na mezifázové energii mezi precipitující fází a substrátem^{6–8} a může být využit pro kvantifikaci bioaktivního chování studovaného substrátu.

Extrémně dlouhá indukční doba růstu krystalů apatitu (4 týdny), kterou v případě čistého titanu zjistili Li a Ducheyne⁹, může být ve shodě s klinicky pozorovaným chováním čistého titanu, který se jeví jako bioinertní materiál, avšak po delších dobách vhojení a za ideálních podmínek (primární stabilita implantátu, dokonalá kongruence kostního lože) vykazuje schopnost pevného spojení s kostí – tzv. osseointegraci¹⁰.

Dynamické experimentální uspořádání umožnilo jednoduché určení indukčních časů pomocí časové závislosti hmotnosti iontů PO_4^{3-} , spotřebovaných při precipitaci apatitu, a její extrapolací do nulové hodnoty (obr. 6, 7). Hodnota zjištěná pro vzorek Ti-bio (24,5 h) je v dobré shodě s hodnotou určenou při statické expozici stejně upravených vzorků⁶. Indukční čas vzorků hydroxyapatitu byl významně kratší než v případě bioaktivního titanu. To lze vysvětlit větší strukturální podobností precipitující fáze a substrátu v případě, kdy substrátem je syntetický hydroxyapatit. Vyšší rychlost spotřeby iontů PO_4^{3-} precipitací apatitu u vzorku HA120 v porovnání s HA1100 je možné vysvětlit větší plochou povrchu v kontaktu s roztokem (obr. 7).

5. Závěr

Dynamické uspořádání testu v simulované tělní tekutině je vhodné k detekci koncentračních změn v roztoku. Na základě časové závislosti výstupní koncentrace z cely je možné interakci bioaktivního titanu s SBF rozdělit do tří základních fází – *I*. adsorpce vápenatých a v menší míře fosforečnanových iontů materiálem, *II*. indukční doba, *III*. růst krystalů kostního apatitu. Zjištěná schopnost rychlé iontové adsorpce může mít významný vliv na pozdější adsorpci biomolekul, jako např. aminokyselin a proteinů, a může tak ovlivnit či přímo předurčit biokompatibilitu a bioaktivitu materiálu ještě předtím, než dojde k růstu krystalů kostního apatitu. Dynamické uspořádání expozice rovněž umožňuje vyhodnocení parametrů precipitace (indukční doba, rychlost růstu), které mohou být použity k odhadu bioaktivity studovaného materiálu.

Studie vznikla jako součást výzkumného záměru Příprava a vlastnosti moderních materiálů – modelování, charakterizace, technologie (MSM 223100002). Zčásti byla podpořena i Ministerstvem průmyslu a obchodu ČR (FB-CV/64/98).

LITERATURA

- Kokubo T., Miyaji F., Kim H. M., Nakamura T.: J. Am. Ceram. Soc. 79, 1127 (1996).
- Kokubo T., Kushitani H., Sakka S., Kitsugi T., Yamamuro T.: J. Biomed. Mat. Res. 24, 721 (1990).
- Hata K., Kokubo T., Nakamura T., Yamamuro T.: J. Am. Ceram. Soc. 78, 1049 (1995).

- 4. Strnad J.: Diplomová práce. VŠCHT, Praha 1998.
- Takadama H., Kim H. M., Kokubo T., Nakamura T., v knize: *Bioceramics 13, Proceedings of the 13th Int. Symp. on Ceramics in Medicine* (Giannini S., Moroni A., ed.), str. 51. SciPress, Zürich 2000.
- Strnad J., Helebrant A., Hamáčková J.: Glastech. Ber.– Glass Sci. Technol. 73 C1, 262 (2000).
- Song L., Campbell A. A., Bunker B. C., v knize: *Hy-droxyapatite and Related Materials* (Brown P. W., Constanz B., ed.), str. 197. CRC Press, Boca Raton 1994.
- Wu W., Nancollas G. H., v knize: *Bioceramics 11, Proceedings of the 11th Int. Symp. on Ceramics in Medicine* (LeGeros R. Z., LeGeros J. P., ed.), str. 469. World Scientific Publishing, New York 1998.
- 9. Li P., Ducheyne P.: J. Biomed. Mater. Res. 41, 341 (1998).
- 10. Strnad Z., Strnad J., Povýšil C., Urban K.: Int. J. Oral Maxillofac. Implants 15, 483 (2000).

J. Strnad, A. Skrčená, J. Protivínský, and A. Helebrant (Department of Glass and Ceramics, Institute of Chemical Technology, Prague, Czech Republic): Interaction of Biomaterials with Simulated Body Environment

A dynamic method for testing of biomaterials in vitro is designed and verified. This method is based on interaction of the material with a flowing solution, which simulates the composition of the inorganic part of human blood plasma. In experiments, bioactive chemically treated titanium (Ti-bio), TiO₂ gel, sintered hydroxyapatite (HA1100) and dried hydroxyapatite (HA120) granules were used. Titanium (grade 3) and silica glass granules were used as reference bioinert materials. With bioactive materials the test confirmed adsorption of Ca²⁺ and PO_4^{3-} ions in the initial phase of interaction and, after induction time (for Ti-bio 24.5 h, HA1100 2.5 h, HA120 3.8 h), the constant growth of bioactive layer of hydroxyapatite. During exposure of bioinert samples no changes in the effluent concentration were detected. The dynamic arrangement also enables a simple evaluation of precipitation parameters (induction time, growth rate), which can be used for bioactivity quantification of the investigated materials.

VYUŽITÍ PYROLÝZNÍ PLYNOVÉ CHROMATOGRAFIE K HODNOCENÍ BENZINOVÝCH SUROVIN ETHYLENOVÉ PYROLÝZY

ZDENĚK BĚLOHLAV^a, DUŠAN PAVLÍK^a, TOMÁŠ HERINK^b, PETR SVOBODA^b, PETR ZÁMOSTNÝ^a a JAN MAREK^c

^aÚstav organické technologie, Vysoká škola chemicko-technologická v Praze, Technická 5, 166 28 Praha 6, ^bChemopetrol a.s. Litvínov, ^cShimadzu Handelsgesellschaft mbH, Ocelářská 35, 190 00 Praha 9 e-mail: zdenek.belohlav@vscht.cz

Došlo dne 14.III.2002

Klíčová slova: ethylenová pyrolýza, modelování pyrolýzy, pyrolýza benzinů

Obsah

- 1. Úvod
- 2. Laboratorní testování benzinových surovin
- 3. Simulace provozních dat
- 4. Přenos laboratorních dat do provozních podmínek
- 5. Závěr

1. Úvod

Pyrolýzou uhlovodíků (ethylenovou pyrolýzou) se označuje tepelný rozklad uhlovodíků na nízkomolekulární alkenové produkty, především ethylen a propylen. Pyrolýzní reakce probíhají hlavně radikálovým mechanismem, při vyšších stupních konverze surovin se uplatňují významně také reakce molekulární. Reakční směs je silně ředěna inertem - vodní parou, která snížením parciálního tlaku uhlovodíků částečně brání průběhu nežádoucích sekundárních reakcí vedoucích k tvorbě pyrolýzního oleje a uhlíkatých úsad. Jako suroviny se používají podle geografické polohy a situace na petrochemickém trhu především ethan, propan, zkapalněné rafinérské a přírodní plyny, benziny, atmosférické a vakuové plynové oleje a destilační zbytky z procesu hydrokrakování. Protože rozkladné pyrolýzní reakce jsou velmi rychlé a silně endotermické, je třeba dodat reakční směsi v krátkém časovém intervalu značné množství tepla. Pyrolýzní reaktory jsou proto konstruovány jako tenké trubky - vlásenky s extrémně vysokým průtokem reakční směsi. Soustava několika vlásenek v radiační komoře je součástí tzv. pyrolýzní pece. Délka vlásenek dosahuje přibližně 10 až 100 m, maximální rychlost proudění reakční směsi 170 až 220 m.s⁻¹a doba zdržení reakční směsi ve vlásence se pohybuje od asi 0,1 do 0,6 s. Do vlásenky vstupuje surovina předehřátá na 500 až 600 °C, v komoře se žhavými spalinami topného plynu se reakční směs postupně ohřívá na 770 až 900 °C.

Pyrolýza uhlovodíků je v laboratorních podmínkách studována v různých typech reaktorů^{1–4}. Mezi nejčastěji používané patří trubkové reaktory, zatímco ostatní typy, např. vsádkové a průtočné míchané reaktory, mají pouze okrajový význam. Vlásenky průmyslových reaktorů nejlépe napodobují trubkové reaktory. Oproti průmyslovým reaktorům však vykazují zcela odlišné vlastnosti – podstatně vyšší poměr vnitřního povrchu trubky k reakčnímu objemu a pomalý tok reakční směsi vytvářejí odlišné axiální i radiální teplotní a tlakové profily. Nezanedbatelným zdrojem potíží s přenosem dat z laboratorních na průmyslové reaktory je stěnový efekt. Radikály zanikají řádově rychleji na kovových stěnách (vysoká tepelná vodivost, oxidačně-redukční vlastnosti) než na stěnách nekovových (obvykle křemenných laboratorních reaktorů). U kovových laboratorních reaktorů je naopak vliv stěnového efektu podstatně silnější než u průmyslových reaktorů z důvodu relativně velkého povrchu reaktoru a malého reakčního objemu.

Experimenty s počítačově řízenými laboratorními reaktory spojenými s dokonalou analýzou reakční směsi lze získat dostatečné množství a vhodnou strukturu spolehlivých dat, která mohou být ve spojení s výsledky provozních experimentů zdrojem pro návrh matematického modelu, určeného k transformaci laboratorních dat do provozních podmínek. Jedním z aktuálních úkolů, řešených v rámci spolupráce VŠCHT Praha a Chemopetrolu Litvínov, je hodnocení kvality benzinových surovin. Nejvýznamnějším kritériem kvality jsou očekávané výtěžky žádaných produktů, hlavně ethylenu a propylenu (pod pojmem výtěžek produktu se v dalším textu rozumí množství získaného produktu, vztažené na množství zpracované suroviny). Protože při nákupu surovin v Chemopetrolu jsou benziny většinou charakterizovány pouze hustotou, skupinovým složením a destilační křivkou, je predikce výtěžků pyrolýzních produktů velmi nespolehlivá. Proto je zkoumána možnost hodnocení benzinových surovin pyrolýzou v laboratorním reaktoru s následnou transformací získaných výtěžků pyrolýzních produktů do provozních podmínek.

2. Laboratorní testování benzinových surovin

K laboratornímu testování benzinových surovin je na VŠCHT používána pyrolýzní plynová chromatografie, založená na přímém propojení pulzního trubkového mikroreaktoru PYR 4A Shimadzu se systémem dvou tandemově uspořádaných chromatografů GC 17A Shimadzu (obr. 1).

Pyrolýzní reaktor je tvořen tenkou křemennou trubičkou. Plynné a kapalné vzorky jsou dávkovány injekční stříkačkou přes septum, zatímco pevné vzorky umístěné v miniaturní platinové lodičce jsou volným pádem aplikovány přímo do středu reaktorové trubice. K ohřevu reaktoru slouží elektricky vyhřívaná pícka, regulovaná na přesně definovanou teplotu (max. asi 820 °C). Základním požadavkem pyrolýzní chromatografie je co nejrychleji ohřát testovaný vzorek na požadovanou teplotu a produkty rozkladu co nejrychleji ochladit. Pro teplotní profil reakční směsi je proto charakteristická relativně krátká reakční zóna a strmý nárůst a pokles teploty v ohřívací a chladicí zóně (obr. 2). Produkty pyrolýzy jsou vedeny do sekce se samostatnou regulací teploty, určené pouze k zamezení kondenzace pyrolýzních produktů. Vzhledem k tomu, že proudění reakční směsi původní křemennou trubičkou bylo silně laminární, byl reaktor částečně naplněn inertním materiálem, karborundem s průměrnou velikostí částic asi 0,1 mm. Náplň, která přiblížila tok reakční směsi pístovému toku, zlepšila v konečném důsledku výrazně spolehlivost experimentálních měření.

Spojení dvou plynových chromatografů bylo zvoleno jako řešení požadavku analyzovat nejen běžné plynné produkty pyrolýzy, ale i těžší, výševroucí frakce, a také zajistit co nejkratší dobu analýzy. Sériové uspořádání chromatografů umožňuje nastavení rozdílných teplot v obou přístrojích, oddělené ovládání průtoku nosného plynu kolonami, a tím i paralelní eluci obsahu všech analytických kolon. První chromatograf je osazen dvěma plameno-ionizačními detektory FID1 a FID2 a injektorem I1. V termostatu chromatografu jsou umístěny dvě kapilární kolony K1 a K2 a tři přepínací kohouty V1-V3. Kohout V1 slouží k dávkování vzorků pomocí dávkovací smyčky. Druhý chromatograf je vybaven plameno-ionizačním detektorem FID3, tepelně-vodivostním detektorem TCD a injektorem I2. V termostatu tohoto chromatografu je umístěna kapilární kolona K3 a přepínací kohout V4. Propojení mezi chromatografy zajišťuje ohřívaná průchodka. Nosný plyn (dusík) je připojen do pyrolýzního nástavce, obou injektorů I1 a I2 a do kohoutu V2.

Analýza pyrolýzních produktů je v systému obou chromatografů založena na přibližně oddělené analýze pyrolýzního

Obr. 1. Schéma pyrolýzního chromatografu; R – reaktor, K1–K3 – kapilární kolony, V1–V4 – přepínací kohouty, I1–I2 – injektory, FID1–FID3 – plameno-ionizační detektory, TCD – tepelně-vodivostní detektor, C – PID regulátor teploty pyrolýzního reaktoru, Q – zdroj nosného plynu přicházejícího do kohoutu V2

plynu (vodík, uhlovodíky C_1 až C_4), pyrolýzního benzinu (uhlovodíky C_5 až C_{11}) a pyrolýzního oleje (uhlovodíky C_{12} a vyšší). Po vstupu reakční směsi do prvního chromatografu jsou kohouty V1 až V3 postupně přepojovány ve čtyřech časových periodách tak, aby byly jednotlivé frakce pyrolýzních produktů analyzovány odděleně (obr. 3):

- Při výchozím nastavení kohoutů jsou všechny kolony propojeny za sebou. Pyrolýzní olej se sorbuje v první koloně, pyrolýzní benzin a pyrolýzní plyn přecházejí do druhé a třetí kolony.
- Přetočením kohoutu V2 dojde k protisměrné eluci nejtěžších podílů z kolony K1 a jejich souhrnné analýze na detektoru FID2, zbytek vzorku je dále unášen kolonami K2 a K3.
- 3. Přetočením kohoutu V3 dojde k oddělené eluci pyrolýzního plynu na koloně K3 a pyrolýzního benzinu na koloně K2. Pyrolýzní benzin se následně analyzuje na detektoru FID1 a vodík a methan z pyrolýzního plynu na detektoru TCD.
- Přetočením kohoutu V4 je přesměrována analýza uhlovodíkového zbytku pyrolýzního plynu z detektoru TCD na detektor FID3.

3. Simulace provozních dat

Nutným předpokladem spolehlivého přenosu laboratorních dat do průmyslového měřítka je dostatek vhodných provozních měření. Pro experimenty v provozních podmínkách je však typická omezená volba experimentálních podmínek⁵. Obvykle lze částečně nebo zcela plánovat zatížení reaktoru, teplotu reakční směsi a ředění reakční směsi vodní parou. Mimo oblast plánování se však již obvykle nachází složení zpracovávané suroviny. Složení jednotlivých dodávek benzinů je sice dostatečně variabilní, avšak výsledné složení

Obr. 2. Příklad teplotního profilu reakční směsi v reaktorové trubici; T – teplota, l – délková souřadnice reaktoru

Obr. 3. Schéma analýzy reakční směsi

nástřiku na pyrolýzní reaktory odpovídá směsi, která vzniká smícháním veškerých dodávek benzinů ve velkokapacitním zásobníku. Plány experimentů jsou pak omezeny podobným složením surovin. Volba počtu experimentů není proto výhradně důsledkem relativně vysokých nákladů a časové náročnosti na jejich realizaci, ale i omezeného prostoru volby nezávisle proměnných veličin.

Výsledky provozních experimentů byly proto získány náhradní cestou – výpočty se semimechanistickým modelem pyrolýzní pece^{7,8}, identifikovaným na základě výsledků provozních experimentů v Chemopetrolu. Semimechanistický popis radikálových reakcí je založen na předpokladu dlouhých propagačních řetězců (které dovolují zanedbat iniciační a terminační reakce), okamžitého rozkladu těžších, nestabilních radikálů a pseudostacionární koncentrace malých, velmi reaktivních radikálů. Ostatní reakce propagační fáze, především adice radikálů na molekuly s nenasycenými vazbami, jsou modelovány systémem formálních molekulárních reakcí. Kinetický model byl identifikován a verifikován na základě výsledků 10, resp. 42 provozních experimentů s pyrolýzou různých surovin na různých typech pyrolýzních vlásenek.

Pro simulační výpočty byla vybrána vlásenka klasického typu SRT III (Short Residence Time). Větve vlásenky s průměrem asi 6 cm se postupně spojují do silnějších větví o průměru 8 a 12 cm (obr. 4). Celková délka vlásenky je asi 60 m. Výhodou uvedené struktury vlásenek je postupné zmenšování poměru teplosměnné plochy k objemu trubky, které zrovnoměrňuje tok tepla z radiačního prostoru do reakční směsi v souladu s klesající spotřebou tepla.

K plánování simulačních experimentů byl použit úplný faktorový plán 3⁴ (tři úrovně nezávisle proměnných a čtyři nezávisle proměnné – typ benzinu, zatížení reaktoru, poměr

Obr. 4. Schéma pyrolýzní vlásenky SRT III

Referáty

ředění vodní parou a teplota reakční směsi na výstupu z vlásenky), tj. celkem 81 výpočtů. Volba rozsahu nezávisle proměnných vycházela z obvyklých parametrů provozních režimů. Stručná charakteristika simulačních experimentů je uvedena v tabulce I.

4. Přenos laboratorních dat do provozních podmínek

Jednu z možných cest transformace laboratorních dat na informace využitelné v průmyslové praxi nabízejí umělé neuronové sítě^{8,9}. Podobně jako je u klasických empirických modelů nutné optimalizovat jejich parametry, jsou v průběhu učení neuronové sítě optimalizovány úpravou signálů tak, aby pro získané výsledky laboratorních experimentů a zadané provozní parametry (vstupy do neuronové sítě) odpovídaly výstupy sítě co nejvíce výsledkům provozních experimentů se stejnou pyrolyzovanou surovinou. Optimalizovaná síť je pak schopna pro daný provozní reaktor a dané provozní parametry predikovat provozní chování laboratorně testované suroviny.

Pro přenos dat z laboratorního reaktoru do provozních podmínek byla použita dopředná umělá neuronová síť s kombinovanými vstupy údajů z laboratorních a provozních podmínek a s výstupy predikujícími provozní výtěžky methanu, ethylenu a propylenu (obr. 5). Jako vstupy neuronové sítě z provozních podmínek byly použity zatížení provozního reaktoru, ředicí poměr pára/surovina a teplota reakční směsi na výstupu z pyrolýzní vlásenky. Tlak reakční směsi na výstupu z vlásenky zatím do modelu zahrnut nebyl, protože při všech provozních experimentech, a tím i simulačních výpočtech, byla jeho hodnota konstantní. Laboratorní experimenty reprezentovaly výtěžky methanu, ethylenu a propylenu, získané pyrolýzou benzinových surovin v laboratorním reaktoru. Výběr výstupních veličin byl motivován jejich praktickým významem

Tabulka I

Zvolené hodnoty nezávisle proměnných pro simulační experimenty (matematický model vlásenky typu SRT III)

Hustota	Nástřik	Ředicí	Výstupní
benzinu	suroviny	poměr	teplota
[kg.m ⁻³]	[t.h ⁻¹]	[kg.kg ⁻¹]	[°C]
680; 706; 730	19; 22; 25	0,3; 0,5; 0,7	810; 825; 840

Obr. 5. Schéma umělé neuronové sítě pro přenos dat z laboratorních do provozních podmínek

Tabulka II

Příklad vstupů a výstupů neuronové sítě (vlásenka typu SRT III, benzin o hustotě 706 kg.m⁻³)

	V	stupy		Výstupy	
laboratorní [hm.%]	výtěžky	provozní parametry		simulované _] výtěžky [hm	provozní .%]
Methan	9,8	nástřik benzinu	$21,0 \text{ t.h}^{-1}$	Methan	15,0
Ethylen	23,2	výstupní teplota	834 °C	Ethylen	25,7
Propylen	16.8	ředicí poměr	0.6 kg.kg ⁻¹	Propylen	13.5

Ethylen a propylen představují nejen nejdůležitější produkty pyrolýzy, ale společně s methanem se v praxi používají i k hodnocení konverze pyrolyzovaných směsí uhlovodíků (obvykle v podobě hmotnostních poměrů ethylen/propylen a methan/propylen). Příklad konkrétních vstupů a výstupů neuronové sítě je uveden v tabulce II.

Obr. 6. Porovnání simulovaných (y_s) a provozních (y_E) výtěžků pyrolýzy primárních benzinů; \bullet methan, \blacksquare ethylen, \checkmark propylen

Obr. 8. Simulované výtěžky (y_s) vybraných produktů pyrolýzy typických primárních benzinů v závislosti na ředicím poměru pára/surovina (D). Vlásenka typu SRT III, hustota benzinů 680 (a), 706 (b) a 730 kg.m⁻³ (c), zatížení surovinou 22 t.h⁻¹, výstupní teplota 825 °C

Obr. 7. Simulované výtěžky (y_s) vybraných produktů pyrolýzy typických primárních benzinů v závislosti na výstupní teplotě z vlásenky *T*. Vlásenka typu SRT III, hustota benzinů 680 (a), 706 (b) a 730 kg.m⁻³ (c), zatížení surovinou 22 t.h⁻¹, ředicí poměr pára/surovina 0,5 kg.kg⁻¹

Obr. 9. Simulované výtěžky (y_s) vybraných produktů pyrolýzy typických primárních benzinů v závislosti na zatížení reaktoru surovinou (*F*). Vlásenka typu SRT III, hustota benzinů 680 (a), 706 (b) a 730 kg.m⁻³ (c), ředicí poměr pára/surovina 0,5 kg.kg⁻¹, výstupní teplota 825 °C

Pro predikci provozních výtěžků produktů pyrolýzy se jako optimální ukázala dopředná neuronová síť s jednou skrytou vrstvou obsahující pět neuronů. Síť byla učena v prostředí Neural Networks Toolbox pro MATLAB s využitím Levenbergovy-Marquardtovy optimalizační metody. Optimální struktura sítě byla hledána postupným testováním sítí od složitějších struktur k jednodušším. Jako kritérium optima byl použit součet čtverců odchylek simulovaných a naměřených dat provedený na tzv. validační sadě dat, tj. na datech, která nebyla využita při vlastním učení sítě. Zatímco hodnota tohoto kritéria pro trénovací data monotónně klesá s rostoucím počtem neuronů, na validační sadě dat dosahuje minima. Nárůst hodnoty kritéria pro vyšší než optimální počet neuronů je příznakem přeučení sítě způsobeného snahou popsat trénovací data přesněji, než dovoluje chyba měření. Validační sada obsahovala výsledky 20 provozních experimentů získaných pyrolýzou primárních benzinů na peci s vlásenkami typu SRT III. Reziduální odchylky mezi výtěžky validační sady a výtěžky simulovanými optimální neuronovou sítí jsou uvedeny v diagramu na obr. 6. Protože reziduální rozptyl je v relaci s chybou experimentálních měření¹⁰, diagram dokládá dobrou shodu predikovaných a experimentálních dat.

Příklady predikcí výtěžků methanu, ethylenu a propylenu v závislosti na teplotě reakční směsi na výstupu z vlásenky, ředicím poměru pára/surovina a zatížení reaktoru jsou pro typický lehký, střední a těžký primární benzin z Chemopetrolu Litvínov uvedeny na obr. 7 až 9. Z obrázků je především vidět, že s růstem hustoty benzinů, způsobeným především zvyšujícím se obsahem aromátů, klesají výtěžky všech hodnocených produktů, a že nejvýraznější vliv na změny výtěžků vykazuje v provozních podmínkách teplota. Výtěžky ethylenu a methanu jsou přímo úměrné teplotě pyrolýzy a nepřímo úměrné zatížení reaktoru. Pokles nebo nárůst výtěžků propylenu souvisí s dosažením nebo nedosažením jeho výtěžkového maxima, způsobeného měnícím se poměrem následných rozkladných a adičních reakcí propylenu a primárních reakcí jeho tvorby z vyšších uhlovodíků. Příznivý vliv vyššího zředění inertem na výtěžky žádaných produktů ethylenu a propylenu a naopak snížení výtěžků methanu jsou způsobeny snížením parciálního tlaku uhlovodíků, a tím potlačením nežádoucích bimolekulárních sekundárních reakcí.

5. Závěr

Využití výsledků laboratorních experimentů v průmyslové praxi vyžaduje dodatečnou transformaci laboratorních dat vhodným matematickým modelem. Jednu z možností transformace představují umělé neuronové sítě.

Dosavadní zkušenosti s provozem pyrolýzního plynového chromatografu a s přenosem výsledků laboratorních experimentů do provozních podmínek ukazují, že lze s dostatečnou spolehlivostí predikovat výtěžky základních produktů průmyslové pyrolýzy primárních benzinů.

Cílem dalšího výzkumu bude rozšíření testování surovin i na atmosférické plynové oleje, destilační zbytky z procesu hydrokrakování a na směsi kapalných surovin s vybranými recyklovanými frakcemi, např. s frakcí C_s .

LITERATURA

- Come G. M., v knize: Pyrolysis Theory and Industrial Practice (Albright L. F., ed.), str. 256. Academic Press, New York 1983.
- Martens A. J., Glas J., Gaultier J. L.: Hydrocarbon Process. 4, 199 (1979).
- 3. Pant K. K., Kunzru D.: Chem. Eng. J. 67, 123 (1997).
- 4. Bělohlav Z., Zámostný P., Herink T.: Ropa, Uhlie, Plyn Petrochem. *43*, 46 (2001).
- 5. Herink T.: Dizertační práce. VŠCHT, Praha 2002.
- Bělohlav Z., Fiedler L.: Chem. Biochem. Eng. Q. 10, 113 (1996).
- Bělohlav Z., Zámostný P., Herink T.: Chem. Eng. Process., odesláno k otištění.
- 8. Herink T., Bělohlav Z.: Chem. Listy 93, 697 (1999).
- 9. Herink T., Bělohlav Z.: Ropa, Uhlie, Plyn Petrochem. 42, 33 (2000).
- Herink T., Fulín P., Lederer J., Bělohlav Z.: Oil Gas J. 9, 50 (2001).

Z. Bělohlav^a, D. Pavlík^a, T. Herink^b, P. Svoboda^b, P. Zámostný^a, and J. Marek^c (^aDepartment of Organic Technology, Institute of Chemical Technology, Prague, ^bChemopetrol Co., Litvínov, ^cShimadzu Handelsgesellschaft mbH, Prague): Use of Pyrolysis Gas Chromatography for Evaluation of Thermal Cracking of Naphtha

The use of pyrolysis chromatography for the evaluation of steam-cracking naphtha feedstocks in plant conditions is described. The laboratory pyrolysis involves a pulse quartz tube reactor and an online dual gas chromatograph equipped with a system of capillary columns and detectors. The quantified yields of pyrolysis products obtained in laboratory are transferred to the plant conditions using an artificial neural network.

POLYMORFIE A SOLVATOMORFIE PEVNÝCH SUBSTANCÍ VE FARMACII

BOHUMIL KRATOCHVÍL^a, MICHAL HUŠÁK^a a ALEXANDR JEGOROV^b

^aÚstav chemie pevných látek, Vysoká škola chemicko-technologická v Praze, Technická 5, 166 28 Praha 6, ^bIVAX CR a.s., Výzkumná jednotka, Branišovská 31, 370 05 České Budějovice

e-mail: bohumil.kratochvil@vscht.cz, michal.husak@vscht.cz, alexandr_jegorov@ivax-cr.com

Došlo dne 29.I.2002

Klíčová slova: polymorfie, solvatomorfie, aktivní farmaceutické substance

Obsah

- 1. Úvod
- 2. Strukturní rozmanitost
- 3. Predikce forem
- 4. RTG difrakční metody rozlišení
- 5. Patentování
- 6. Závěr

1. Úvod

Polymorfie je jev, kdy jedna chemická látka může v závislosti na krystalizačních podmínkách vykrystalovat v různých polymorfních modifikacích neboli polymorfech. Jinými slovy, určitá molekula nebo strukturní jednotka se může uspořádat do krystalického stavu několika způsoby. Výsledkem jsou rozdílné krystalové struktury a jejich prostorové symetrie. V mineralogii, resp. v anorganické chemii je polymorfie velmi častá; příkladem je dimorfie CaCO₃ (trigonální kalcit a ortorombický aragonit) nebo trimorfie TiO₂ (tetragonální rutil krystalující v prostorové grupě $P 4_2$ /mnm, tetragonální anatas, prostorová grupa $I 4_1$ /amd a ortorombický brookit). Řada technicky významných modifikačních přeměn existuje také v keramice, metalurgii a dalších oborech.

U farmaceuticky aktivních substancí, které jsou v drtivé většině organické molekuly, je zvykem hovořit o pevných formách, příp. fázích. Tím jsou míněny nejen krystalické polymorfy, ale i amorfní formy a také různé krystalické hydráty nebo solváty (zde jsou uváděny méně vžité pojmy: solvatomorfy¹ nebo pseudopolymorfy²). Ačkoliv je biologický účinek aktivní substance vyvolán interakcí molekuly léčiva s cílovým receptorem, je velmi důležité, v jaké formě je léčivo pacientovi podáváno. To znamená, že záleží nejenom na molekulové, ale i krystalové struktuře pevné aktivní substance. Protože různé formy jedné aktivní substance mají různou krystalovou strukturu a tvar krystalů, příp. jsou amorfní, musí se také lišit ve svých fyzikálních a biologických vlastnostech.

Z technologického hlediska se jedná především o různé chování při mikronizaci a tabletaci. Různá rozpouštěcí rychlost polymorfů a solvatomorfů v zažívacím traktu má za následek rozdílnou farmakokinetiku a biodostupnost.

Problémy spojené s polymorfií a solvatomorfií aktivních substancí jsou v centru pozornosti výrobců léčiv. Snahou etické farmaceutické firmy (originálního výrobce), která vyvinula určitou aktivní substanci, je patentově ochránit všechny její možné formy. Lze ovšem jednoznačně předpovědět všechny formy, které může aktivní molekula vytvořit? S tím souvisí vývoj takové analytické metodiky, která je schopna všechny formy jednoznačně charakterizovat a rozlišit. To je nutné nejenom pro stanovení fázové (polymorfní, solvatomorfní) čistoty zvolené formy při výrobě, ale také při patentových sporech etických a generických firem (dalších výrobců).

Otázka polymorfie a solvatomorfie je ve farmacii v posledních několika letech velmi aktuální a žádný farmaceutický producent si ji nedovolí ignorovat. Uvedeným tématem se zabývá tento referát.

2. Strukturní rozmanitost

Struktura různých polymorfů, resp. forem aktivních substancí, je dána především nekovalentními interakcemi mezi jejich molekulami. Krystaly organických látek, které by byly drženy iontovými nebo kovalentními vazbami, se prakticky nevyskytují. Nekovalentními interakcemi v molekulárních krystalech jsou velice často vodíkové můstky, dále van der Waalsovy vazby, π - π interakce a zřídka i vazby v "chargetransfer" komplexech.

Pro demonstraci různých krystalových forem jedné molekuly (uvažujme pouze různé sítě vodíkových můstků) si uveďme názorný příklad. Molekula hypotetického nitrilu (nebyl nalezen v databázi CSD (cit.³)) obsahuje jeden kyslíkový a jeden dusíkový donor protonu a jeden kyslíkový a jeden dusíkový akceptor protonu (obr. 1). Do krystalického stavu se tento nitril může uspořádat např. dvěma způsoby (obr. 2a, 2b). Pokud se do sítě vodíkových vazeb zapojí navíc i molekula vody, vznikne třetí forma (obr. 2c). To ovšem neznamená, že všechny tyto formy musí nutně vzniknout a být stejně stabilní. Pokud je pro daný systém nejvýhodnější forma hydrátu, krystalizace ostatních může být potlačena.

Různé krystalické formy určité molekuly vznikají často krystalizací z různých rozpouštědel (polárních nebo nepolárních), někdy záleží i na obsahu vody v rozpouštědle a samozřejmě na hodnotách teploty a tlaku při krystalizaci. Pro prvotní odhad počtu různých forem, které může v pevném

Obr. 1. Molekula hypotetického nitrilu

stavu vytvořit určitá molekula, je rozhodující počet donorů a akceptorů protonů, které má skelet k dispozici, a dále jejich prostorová orientace (pokud uvažujeme pouze krystalické uspořádání vodíkovými můstky). Eventuálně přítomná molekula vody (nebo jiného solventu obsahujícího protonové akceptory nebo donory) se většinou do sítě vodíkových můstků zapojí. Výjimečně, díky svému vhodnému tvaru a velikosti, zaplní solvent dutiny vytvořené v síti nekovalentně interagujících molekul a do interakce se prakticky nezapojí. Při jeho ztrátě se síť většinou nebortí, jak je tomu např. při ztrátě

Obr. 2. První způsob uspořádání vodíkové sítě v krystalu nitrilu (a), druhý způsob (b), třetí způsob se zapojením i molekul vody (c)

molekuly vody v krystalové struktuře monohydrátu komplexu platiny s derivátem kyseliny fosfinoctové⁴.

Příkladem molekuly, která krystaluje v mnoha formách, je atorvastatin (obr. 3). Tato látka, podávaná ve formě vápenaté soli snižuje obsah cholesterolu v krvi. Molekula atorvastatinu má k dispozici dva protonové donory (=NH a -OH) a pět protonových akceptorů (3 atomy kyslíku a po jednom atomu dusíku a fluoru). Pokud navíc uvážíme, že protonový donor může být současně i akceptorem protonu od jiného donoru a případnou účast i molekul vody nebo jiného solventu obsahujícího atomy vodíku v systému H-vazeb, je potenciální počet možných forem atorvastatinu velmi vysoký. Tento předpoklad byl potvrzen i experimentálně a počet dosud popsaných a tušených forem atorvastatinu se pohybuje okolo 10. Důvodem tohoto nepřesného čísla je utajování nových forem atorvastatinu farmaceutickými firmami do okamžiku jejich patentování. Nejstabilnější formou atorvastatinu je však, trochu překvapivě, trihydrát⁵. Zapojení molekul vody do sítě vodíkových vazeb tak stabilizuje krystal více než samotné protonové donory a akceptory molekuly atorvastatinu. Jiným příkladem různorodosti možných forem je molekula cyklosporinu A (CsA = $cyclo(-MeBmt^{1}-Abu^{2}-Sar^{3}-MeLeu^{4}-Val^{5}-MeLeu^{6}-Ala^{7}-D-$ -Ala⁸-MeLeu⁹-MeLeu¹⁰-MeVal¹¹-)), která vykazuje významné imunosupresivní účinky při potlačení reakce hostitele na tkáňové transplantáty a při léčbě autoimunitních chorob⁶. CsA se vyrábí ve formě dihydrátu a kromě toho byl popsán ještě v dalších sedmi formách (monohydrátu a šesti různých solvátech). Solváty v tomto případě vznikají, jak již bylo zmíněno, tak, že solvent zaplní dutiny vytvořené v síti nekovalentně interagujících molekul. Estradiol tvoří solváty dokonce s více než 30 rozpouštědly⁷. Výrazná tendence k polymorfii byla pozorována rovněž u steroidních hormonů, sulfonamidů, barbiturátů, námelových alkaloidů a antibiotik.

Různé formy jedné aktivní substance se mohou mezi sebou transformovat buď překrystalováním z jiného rozpouštědla nebo změnou teploty, příp. tlaku. Z terapeutického hlediska není vždy nejstabilnější pevná forma aktivní substance nejvýhodnější, protože má nejpomalejší rozpouštěcí rychlost, a tím nejpomalejší nástup účinku. Na druhé straně je u metastabilních forem komplikovanější zajistit dostatečně robustní produkci a reprodukovatelnost šarží. Kromě toho, metastabilní fáze časem přechází na stabilní fázi, takže dochází k polymorfnímu znečištění a doba použitelnosti léčiva se zkracuje.

Obecně lze říci, že organické molekuly mají značnou tendenci krystalovat v různých formách, takže polymorfie a solvatomorfie je ve farmacii běžným jevem. V databázi CSD (cit.³) lze sice nalézt zhruba jen 3 % polymorfních látek⁸, ovšem na druhé straně je jasné, že u většiny zařazených

Obr. 3. Atorvastatin ve formě vápenaté soli

organických struktur nebyla polymorfie nebo solvatomorfie vůbec studována.

3. Predikce forem

Jednou z hlavních příčin polymorfie je fakt, že hyperplocha energie v krystalu obsahuje mnoho různě hlubokých minim ve 12-dimenzionálním prostoru (6 mřížkových parametrů a 6 pozičních parametrů molekuly – 3 translační a 3 rotační, v prvním přiblížení zanedbáváme různé konformace molekuly a neuvažujeme více molekul v asymetrické části buňky).

Při polymorfní přeměně (tzv. fázový přechod 1. řádu) se skokově mění objem a entalpie. Ačkoliv jsou tyto změny často velmi malé, jsou dnes vyvíjeny experimentální metody, kterými lze studovat termodynamický průběh polymorfních přeměn v uzavřeném systému. Metoda skanovací transitiometrie⁹ spojuje kalorimetrická a dilatometrická měření a umožňuje na základě kontinuálně se měnící teploty nebo tlaku v širokém rozmezí měřit průběh objemových, entalpických, ale i tlakových změn, které indukují v systému fázové přechody (typické skanovací rychlosti jsou: *T*: 8.10⁻⁴ K.s⁻¹, *V*: 2.10⁻⁵ cm³.s⁻¹, *p*: 2 kPa.s⁻¹). Aplikace této metody je však omezena na jednoduché a vybrané dimorfní systémy bez uvažování vstupu solventu.

Myšlenka předpovědět krystalové struktury všech forem jedné aktivní substance teoreticky, ze základních principů, je velice lákavá. Pokud by taková metodika byla spolehlivá, ušetřila by se práce jak s řadou krystalizačních experimentů, tak i s problémy spojenými s experimentálním stanovením struktury.

V prvním kroku je nutné předpovědět prostorovou grupu. To je poměrně snadný úkol, protože organické látky obvykle krystalizují pouze v několika málo grupách z 230 možných. Výběr je navíc omezen chiralitou molekuly. Většina chirálních organických molekul krystaluje v grupě P 2, nebo $P \ge 12_1 = 12_1 \ge 12_1 \ge 12_1 = 12_1 \ge 12_1 = 12_$ $P_1, P_2_12_12_1, C_2/c a P_2$, směsi enatiomerů v grupách P_2_1/c , P1 a C 2/c. Výše uvedený předpoklad splňuje přibližně 78 % látek¹⁰ obsažených v Cambridgeské strukturní databázi. V druhém kroku je nutné předpovědět mřížkové parametry. Na základě statisticky ověřeného předpokladu o stabilní velikosti pakovacího koeficientu pro jeden nevodíkový atom organické molekuly (hodnota 19,4) (cit.¹¹) lze poměrně přesně odhadnout objem základní buňky. Velikosti mřížkových parametrů musí být zvoleny tak, aby tomuto objemu odpovídaly. Přesnější predikce hodnot mřížkových parametrů založená na statistice existujících struktur¹² je bohužel značně nespolehlivá. Získají se pouze určité intervaly, ve kterých mřížkové parametry pravděpodobně leží. Posledním a nejdůležitějším krokem predikce struktury je určení pozic molekul v elementární buňce. Zde se ale u běžných organických látek naráží na tři zásadní problémy.

První problém se týká výpočtu silových interakcí, které drží krystal pohromadě. Pro předpověď krystalové struktury je nutné mít k dispozici přesný popis všech silových působení mezi molekulami v krystalu a zejména popis energetických změn, ke kterým při těchto interakcích dochází. Optimální by byl popis kvantově-mechanickými metodami na úrovni *ab initio*. Čím slabší interakce chceme popsat, tím přesnější musí být výpočet, a tím více efektů do něho musíme nutně zahrnout

(např. korelační energie¹³). Kvantově-mechanický výpočet slabých interakcí je díky tomu mnohem náročnější než běžně prováděné výpočty. Výpočetní náročnost roste exponenciálně s počtem elektronů zahrnutých do zpracování. Při nasazení té nejvýkonnější techniky lze v současné době rutinně řešit slabé interakce v systémech o několika desítkách atomů. Pro potřeby predikce je ale nutné tento výpočet opakovat pro různá uspořádaní celého komplexu molekul, čímž se výpočetní náročnost neúnosně zvyšuje. Algoritmy pro přímé vyhledání lokálních minim, případně globálního minima energetické hyperplochy jsou ve stadiu výzkumu a uspokojivé řešení dosud není k dispozici. Problém se dá částečně řešit použitím empirických potenciálů, založených na značné aproximaci popisu silových působení. Příkladem je např. klasická Lennardova-Jonesova funkce 6-12 (atraktivní člen obsahuje šestou a repulzní člen dvanáctou mocninu vzdálenosti) pro popis van der Waalsových interakcí. Tvarový průběh funkcí těchto potenciálů je většinou odvozen z úvah podložených kvantově--mechanickými výpočty. Empirické koeficienty určující vlastnosti určitého atomu jsou odvozené z experimentu, zejména ze strukturních dat již vyřešených krystalových struktur. Popis interakcí pomocí empirických potenciálových funkcí funguje spolehlivě většinou pouze pro molekuly charakterem blízké těm, které byly použity pro kalibraci empirických konstant daného potenciálu.

Druhým zásadním problémem, spojeným s předpovědí krystalové struktury je identifikace správného řešení. Předpověď krystalové struktury probíhá většinou podle následujícího schématu: Při výpočtu je generována řada možných elementárních buněk v rozumném rozmezí mřížkových parametrů, pro zvolené prostorové grupy je do takové buňky umísťována molekula a je provedena minimalizace energií vazebných interakcí. Celý postup se zkouší pro velké množství jak základních buněk, tak výchozích pozic molekuly. V případě flexibilní molekuly může být dalším parametrem, který je nutné měnit, např. torzní úhel této molekuly. Výsledkem celého výpočtu je pak řada potenciálních řešení, jejichž kvalita se dá ohodnotit velikostí energie intermolekulárních sil a v případě flexibilní molekuly i potenciální energií výsledné konformace molekuly. Problém je v tom, že funkce pro hodnocení správného výsledku má většinou velice plochý průběh; rozdíly v energiích jednotlivých řešení jsou většinou menší než 6 kJ.mol⁻¹. Navíc se do jejího průběhu promítají chyby způsobené použitím empirických potenciálů nebo kvantově--mechanických výpočtů na nedostatečné úrovni přesnosti.

Třetí problém je asi vůbec nejhůře teoreticky řešitelný. To, jaká forma ve skutečnosti při krystalizaci vznikne, není dáno pouze termodynamikou, ale i kinetikou krystalizačního procesu. Pro opravdu přesnou predikci vzniku určité formy by bylo nutné modelovat i kinetické aspekty jejího vzniku, modelovat nukleační procesy při krystalizační teplotě a teprve až na základě těchto informací identifikovat, zda daná fáze opravdu vykrystalizuje.

Současný stav v oblasti možnosti predikce krystalových struktur ukazuje slepý test, který byl zorganizován v roce 1999 v rámci workshopu v Cambridgeském krystalografickém datovém centru (CCDC) (cit.¹⁴). Organizace pokusu byla následující: 11 různých pracovišť dostalo informace o konektivitě čtyř různých sloučenin, jejichž krystalové modifikace byly známé, ale dosud nepublikované. Všechny sloučeniny byly poměrně malé rigidní molekuly. Součástí zadání byla infor-

Obr. 4. Vypočtený RTG-práškový difraktogram (a) z vyřešené molekulové (c) a krystalové (d) struktury námelového alkaloidu dihydro-α-ergokryptinu mesylátu monohydrátu nitromethan solvátu; experimentální RTG-práškový difraktogram téže látky (b)

mace, že látka krystaluje v některé z běžných prostorových grup a že všechny modifikace obsahují pouze jednu molekulu v asymetrické části buňky. Úkolem bylo navrhnout pro každou látku maximálně tři krystalové struktury a seřadit je podle pravděpodobnosti existence. Z celkového počtu 105 předpovědí (některé postupy nebyly pro daný typ látky vhodné) odpovídalo pouze 7 předpovědí skutečným strukturám. Z těchto 7 předpovědí bylo jen 5 označeno jako nejvíce pravděpodobné. To znamená, že predikce struktury měla úspěšnost 4,8 %. Pozitivní je, že pro každou látku se podařilo získat alespoň jedním postupem správnou předpověď. To, že dosud neexistuje univerzální postup predikce, se projevilo také v tom, že správný výsledek byl pro každou látku získán jinou pracovní skupinou s použitím zcela jiného programového vybavení. Za zmínku stojí také informace, že správnou predikci krystalové modifikace té nejjednoduší molekuly (propanu), se podařilo zjistit pouze s pomocí kvantově-mechanických výpočtů na úrovni ab initio.

Větší šanci na úspěch, jak předpovědět krystalovou formu, mají techniky založené na alespoň částečné znalosti určitých experimentálních strukturních dat dané látky. Použití těchto informací získaných z RTG práškového difraktogramu (souboru úhlových poloh a relativních intenzit difrakcí změřených na práškovém materiálu) omezuje počet možných řešení zcela zásadně.

4. RTG difrakční metody rozlišení

V předchozí kapitole bylo rozebráno, proč predikční teoretické procedury nevedou jednoznačně k cíli. Nejdůležitější

metodou k rozlišení polymorfních a solvatomorfních fází stále zůstává experimentální metodika RTG difrakční analýzy. V některých případech poskytne rozlišující informaci i optická mikroskopie, příp. termomikroskopie, pokud studované formy krystalují v charakteristických a výrazně odlišných krystalových tvarech. Dalšími, doplňkovými metodami, jsou NMR v pevné fázi, IČ spektroskopie a studium tepelného rozkladu.

Určitou formu krystalické aktivní substance lze jednoznačně charakterizovat RTG strukturní analýzou provedenou na monokrystalu. Tím se určí nejenom pozice všech přítomných atomů, včetně případného solventu v elementární buňce, ale i přesná stechiometrie substance, a to i v případě parciální solvatace (hodnoty obsazovacích faktorů atomů molekuly solventu se korelují s nejnižší hodnotou R-faktoru, tj. rozdíl mezi experimentálně nalezeným a vypočteným modelem struktury). Z vyřešené monokrystalové struktury lze vypočíst teoretický RTG práškový difraktogram a porovnat jej s experimentálním difraktogramem výrobní šarže. V případě shody má farmaceutický výrobce k dispozici jednoznačnou identifikaci krystalické formy aktivní substance, kterou produkuje, a navíc kontrolu reprodukovatelnosti šarží (obr. 4). Často je však problém příslušný monokrystal vypěstovat. Pak přichází na řadu ostatní analytické metody, ovšem je nutné konstatovat, že v některých případech je jimi velice obtížné, někdy i nemožné, jednotlivé formy rozlišit, např. u tzv. konformační polymorfie².

Nejfrekventovanější analytickou technikou je RTG prášková analýza provedená na polykrystalickém materiálu. Je ovšem nutné si uvědomit, že samotný difraktogram není zárukou charakterizace jedné fáze. Může se jednat o polykrystalickou směs, kde výsledný difraktogram je superpozicí difraktogramů čistých složek. Pro jednoznačnou charakterizaci určité fáze je nutné provést některý z dále popsaných kroků.

Nejjednodušším způsobem, jak prokázat existenci pouze jedné fáze, je indexace RTG práškových dat, tj. přiřazení difrakčních indexů všem pozorovaným liniím na difraktogramu a následný výpočet mřížkových parametrů. Pro indexaci byla vyvinuta řada matematických postupů; běžně používanými indexačními programy jsou např. TREOR90 (cit.¹⁵), ITO13 (cit.¹⁶) nebo DICVOL91 (cit.¹⁷). Problémem indexace někdy může být nejednoznačnost výsledku. Důvodem je ztráta některých informací daných geometrií RTG-práškového experimentu v kombinaci s velkým počtem parametrů, které potřebujeme určit (až 6 mřížkových parametrů u triklinické buňky).

Výsledky získané indexací práškového difraktogramu můžeme dále potvrdit stanovením kompletní krystalové struktury z práškových dat. Tímto způsobem se daří vyřešit krystalovou strukturu většinou pouze v omezeném množství případů. Šance na úspěch je podmíněna malou flexibilitou molekuly uspořádávající se do krystalové struktury a pokud možno výskytem pouze jedné molekuly v asymetrické části buňky. Nové přístupy, jako např. použití genetických algoritmů¹⁸ pro prohledávání prostoru řešení nebo zahrnutí intermolekulárních interakcí¹⁹ do výpočtu, dávají řešení struktur z práškových dat určité šance do budoucnosti.

Mezi pevné formy aktivních substancí jsou zahrnovány také amorfní a semikrystalické fáze. Jejich difraktogramy obsahují buď široká difrakční maxima nebo jen několik vyvinutějších difrakčních píků, často superponovaných na zvýšené pozadí. Predikce nebo modelování struktury je zde obtížnější a ještě méně jistější než u krystalických fází. Nicméně i v těchto případech nalézáme určitou reprodukovatelnost difraktogramu, i když podstatně horší než u dobře krystalických forem. To proto, že hranice mezi fází krystalickou a amorfní je neostrá, a to umožňuje vznik řady přechodných – semikrystalických fází.

5. Patentování

Nově vyvinuté látky si etické firmy obvykle chrání pomocí patentů. V závislosti na teritoriu je nová aktivní substance chráněna po určitou dobu prakticky nezpochybnitelnou tzv. látkovou ochranou. Spolu s tím je obvykle chráněn i způsob výroby, který však již tak neotřesitelný není a ve většině případů jej lze obejít, zjednodušit nebo nalézt výhodnější meziprodukty. Tak lze pro jednu aktivní substanci posléze nalézt celou řadu patentů, obvykle pocházejících již od generických výrobců a popisujících nové způsoby výroby.

V poslední době je nově využíván patentový trik, který spočívá v dodatečném objevení nové krystalové formy a jejím patentovém chránění. Vzhledem k tomu, že u léčiv je pro určitou lékovou formu někdy výhodnější rychle rozpustná krystalová forma a jindy naopak méně rozpustná, někdy přinášejí výhodu větší a stálejší krystaly, jindy je naopak biodostupnost lepší u mikrokrystalických nebo amorfních fází. Protože jednotlivé formy se liší stálostí nebo obsahem zbytkových rozpouštědel, je prakticky téměř vždy možno nalézt alespoň jakousi virtuální výhodu nové krystalové formy, která patentování umožní. Tím vzniká prostor pro syntézu dosud nepo-

psaných a patentově nechráněných forem aktivních substancí a jejich farmaceutickou formulaci generickými firmami. Klíčovým důsledkem tohoto postupu je možnost prodloužení patentové ochrany např. i u látek, u nichž již pominula látková ochrana, a staly se tak generickými substancemi. Typickým příkladem tohoto postupu je např. ochrana krystalových forem paclitaxelu (Taxolu[®]) (cit.^{20,21}).

Vzhledem k tomu, že pro patentování krystalových forem aktivních substancí nejsou stanovena prakticky žádná pravidla, hlavní pohnutky pro jejich patentování nejsou obvykle odborné, ale ryze ekonomické. Např. trh potenciálních uživatelů skupiny statinů, převedený na celkovou cenu, je odhadován na celém světě asi na 6 miliard USD, a proto se řada farmaceutických producentů snaží získat co největší podíl. Jako jednoznačná charakteristika krystalové formy bývají v patentech zpravidla uváděna RTG prášková data. Spornost charakterizace fáze pouze tímto způsobem, bez doplňujících údajů, byla rozebrána v kapitole 4. Kromě toho, že neoindexovaný práškový difraktogram není zárukou existence pouze jedné fáze ve vzorku, není tímto způsobem možné ani rozlišit izostrukturní řady solvátů. Tyto nejasnosti pak mohou být základem vleklých právních sporů, kdy právníci původců využívají nejednoznačnosti patentové charakterizace pro to, aby do patentů zahrnuli i jakákoliv možná složení krystalů, která by snad v budoucnu bylo možné očekávat.

6. Závěr

Existence polymorfie a solvatomorfie aktivních substancí je problémem, ale i východiskem současného farmaceutického průmyslu. Problémem ve smyslu nestejných fyzikálních a biologických vlastností jednotlivých polymorfů a solvatomorfů a nadějným východiskem ve smyslu šance pro generické výrobce, jak obejít patenty etických firem. Jednoznačná předpověď počtu různých pevných forem určité aktivní molekuly dosud neexistuje, ačkoliv jsou velmi intenzivně vyvíjeny různé teoretické postupy kombinované s experimentálními daty. Stále jsou proto zdokonalovány analytické metody rozlišení a stanovení polymorfů a solvatomorfů, z nichž nejdůležitější jsou RTG difrakční analýzy (monokrystalová a prášková) a dále NMR v pevné fázi, IČ spektroskopie a studium tepelného rozkladu.

Tato práce byla podpořena Ministerstvem školství, mládeže a tělovýchovy (výzkumný záměr č. CEZ: MSM 223100002). Autoři vyjadřují dík Ing. H. Petříčkové za poskytnutí obrázku č. 4.

LITERATURA

- 1. Brittain H. G.: Pharm. Technol. 2000, 116.
- Byrn S. R.: Solid State Chemistry of Drugs. Academic Press, New York 1982.
- Allen F. H., Kennard O.: 3D Search and Research Using the Cambridge Structural Database. Chem. Design Automation News 8 (1), 31 (1993).
- Hazell A. C., Hazell R. G., Kratochvíl B., Podlahová J.: Acta Crystallogr., Sect. B 37, 2068 (1981).
- Ayalon A., Levinger M., Roytblat S., Niddam V., Lifshitz R.: PCT WO 0136384.

- Kratochvíl B., Hušák M., Jegorov A.: Chem. Listy 95, 9 (2001).
- Kuhnert-Brandstätter M., Gasser P.: Microchem. J. 16, 590 (1971).
- Henck J.-O., Bernstein J., Ellern A., Boese R.: J. Am. Chem. Soc. 123, 1834 (2001).
- 9. Randzio S. L.: Thermochim. Acta 355, 107 (2000).
- 10. Verver P., Leusen F. J. J.: Rev. Comput. Chem. *12*, 327 (1998).
- Alkorta I., Rozas I., Elguero J., Foces-Foces C., Cano F. H.: J. Mol. Struct. 382, 205 (1996).
- 12. Gavezzotti A.: J. Am. Chem. Soc. 113, 4622 (1991).
- Hobza P., Zahradník R.: *Mezimolekulové komplexy*. Academia, Praha 1988.
- 14. Lommerse J. P. M.: Acta Crystallogr., Sect. B 56, 697 (2000).
- 15. Werner P. E., Errikson L., Westdahl M. J.: J. Appl. Crystallogr. 18, 367 (1985).
- 16. Visser J. W.: J. Appl. Crystallogr. 2, 89 (1969).
- 17. Boultif A., Louer D.: J. Appl. Crystallogr. 24, 987 (1991).
- Kenneth D. M. H., Tremayne M., Kariuki B. M.: Angew. Chem., Int. Ed. Engl. 40, 1626 (2001).
- Gavezzotti A., Filippini G. J.: J. Am. Chem. Soc. 118, 7153 (1996).
- Perrone R. K.; Stenberg S. R., Kaplan M. A., Saab A., Agharkar S.: EP 0717041 (1995).

21. Authelin J. R., Didier E., Leveiller F., Taillepied I.: US Pat. 6,002,022 (C 07 D305-14).

B. Kratochvíl^a, M. Hušák^a, and A. Jegorov^b (^aDepartment of Solid State Chemistry, Institute of Chemical Technology, Prague, ^bIVAX CR, Research Unit, České Budějovice): **Polymorphism and Solvatomorphism of Solid Substances in Pharmacy**

The ability of a particular substance to exist in several different crystal forms (unsolvated or solvated) is called polymorphism or solvatomorphism. These phenomena are frequently observed in solid pharmaceuticals. Polymorphs and solvatomorphs of a compoud differ in their physical and biological properties (crystal shape, hardness, melting point, solubility, pharmacokinetics, bioavailability, etc.). This influences commercial drug formulations and their therapeutical effect. The exact theoretical prediction of all polymorphs and solvatomorphs is not yet possible. The most frequently used analytical method of detection and characterization of polymorphic and solvatomorphic forms is X-ray diffraction (single-crystal structure analysis and collection of powder patterns). Producers of original pharmaceuticals endeavour to patent all crystal forms of the developed active substance, while generic producers search for new polymorphs (solvatomorphs) or technologies. Clearly this can cause lawsuits.

STOPOVÁ ANALÝZA ORGANICKÝCH KONTAMINANTŮ – PŘÍKLADY APLIKACE MODERNÍCH INSTRUMENTÁLNÍCH TECHNIK V OBLASTI POTRAVIN A BIOTICKÉ SLOŽKY ŽIVOTNÍHO PROSTŘEDÍ

JANA HAJŠLOVÁ

Ústav chemie a analýzy potravin, akreditovaná Metrologická laboratoř, Vysoká škola chemicko-technologická v Praze, Technická 5, 166 28, Praha 6 e-mail: jana.hajslova@vscht.cz

Došlo dne 20.III.2002

Klíčová slova: kontaminanty, stopová analýza, multireziduální metody, pracovní charakteristiky, chromatografie, hmotnostní spektrometrie, matriční efekty

Obsah

- 1. Úvod
- Multireziduální metody, základní požadavky na pracovní charakteristiky
- 3. Plynová chromatografie (GC)
 - 3.1. Matriční efekty v GC
 - 3.1.1. Matriční efekty v GC injektoru
 - 3.1.2. Optimalizace nástřikové techniky v GC
 - 3.2. Rychlá GC
 - 3.3. Spojení GC-MS
- Vysokoúčinná kapalinová chromatografie (HPLC)
 4.1. Spojení LC-MS
 - 4.1.1. Matriční efekty v LC-MS²

1. Úvod

Intenzivní rozvoj průmyslové výroby, dopravy i služeb spolu s rozsáhlou chemizací řady oblastí zemědělské výroby, ke kterým došlo zejména ve druhé polovině minulého století, byl bohužel doprovázen i některými negativními aspekty. Jedním z nejzávažnějších byl vzrůstající rozsah emisí širokého spektra chemických škodlivin prakticky do všech složek životního prostředí včetně potravního řetězce člověka. Potřeba získat podklady pro proces identifikace a charakterizace (eko)toxikologických rizik; nutnost průběžného sledování dopadů přijatých preventivních či nápravných opatření i vzrůstající rozsah legislativních požadavků na kontrolu dodržování norem v oblasti chemické bezpečnosti se zákonitě promítly v intenzifikaci výzkumu zaměřeného na vývoj progresivních spektrálních, chromatografických a dalších analytických metod určených pro sledování reziduí anorganických i organických kontaminantů v různých typech environmentálních matric a poživatin. Pozoruhodné pokroky dosažené v oblasti stopové analýzy úzce souvisely s expanzivním zaváděním počítači řízené instrumentace využívající v široké míře prvků automatizace a robotizace.

Ústav chemie a analýzy potravin VŠCHT se problemati-

kou sledování chemických škodlivin v prostředí člověka (vedle xenobiotik jde v řadě případů i o toxiny přírodního původu) zabývá již více než tři desítky let. V současné době se pracoviště podílí na několika tuzemských i mezinárodních projektech zaměřených na zavádění, optimalizaci a validaci (ultra)stopových chromatografických metod pro analýzy těkavých organických kontaminantů.

Cílem dále uvedeného pojednání je s využitím nejnovějších poznatků a praktických zkušeností získaných při vyšetřování vzorků poživatin a environmentálních biotických matric ilustrovat stávající trendy v oblasti reziduální analýzy se zvláštním důrazem na aplikaci perspektivních instrumentálních technik. Pozornost je zaměřena především na kritické aspekty terminálního analytického kroku (identifikace a kvantifikace analytů), které je nutné zohlednit při zajištění kvality generovaných dat. Metody izolace reziduí a purifikace primárních extraktů (oddělení cílových analytů od ko-izolovaných složek výchozí matrice) byly předmětem předchozí publikace v tomto časopise¹. Je třeba zdůraznit, že tato práce si neklade za cíl přinést souhrnný přehled používaných progresivních technik a stávajících trendů v oblasti reziduální analýzy, referovány jsou zde původní práce autorského pracoviště, ve kterých lze nalézt související odkazy.

2. Multireziduální metody, základní požadavky na pracovní charakteristiky

Požadavky na zvýšení laboratorních kapacit při současné minimalizaci nákladů řeší mnohé kontrolní laboratoře postupným zaváděním tzv. multireziduálních metod, které umožňují v různých matricích v rámci jediné analýzy² stanovit velký počet analytů vyznačujících se někdy i poměrně širokým spektrem fyzikálně-chemických vlastností. V tabulce I je uveden výčet nejvýznamnějších kritérií³ jak z oblasti provozních požadavků, tak i pokud jde o pracovní charakteristiky, z jejichž specifikace se při volbě vhodného analytického postupu vychází.

Je samozřejmé, že v reálných podmínkách je nutné hledat optimální kompromis vycházející ze zhodnocení konkrétního cíle uvažovaného analytického vyšetření a podmínek dostupných pro jeho realizaci. Příklady konkrétních požadavků^{4–6} na základní pracovní charakteristiky metod aplikovaných v oblasti stopové analýzy pro legislativní účely jsou shrnuty v tabulce II.

3. Plynová chromatografie (GC)

Plynová chromatografie představuje bezesporu jednu z nejvýznamnějších technik využívaných v analýze reziduí organických kontaminantů⁷. Možnost zlepšení pracovních charakteristik multireziduálních metod v našich studiích hledáme jak na úrovni vhodného výběru nástřikové techniky, tak i prostřednictvím optimalizace vlastního chromatografického procesu a v neposlední řadě volbou vhodných podmínek detekce.

Tabulka I

Kritéria zohledňovaná při výběru analytického postupu v reziduální analýze

Parametry podmiňující kvalitu výsledků	Aspekty vztahující se k ekonomickým parametrům
Limit detekce, limit kvantifikace	Náklady na zařízení, chemikálie a pomůcky, cena lidské práce
Přesnost: správnost a shodnost ^a	Délka analýzy, průsaznost vzorků
Citlivost	Náklady na zajištění kontroly jakosti včetně externí (mezilaboratorní porovnání)
Selektivita a specificita	Požadavky na prostor a energie, cena údržby
Dynamický a lineární rozsah	Náklady na bezpečnostní opatření
Robustnost	Pracnost, resp. snadnost provedení, možnosti automatizace, příp. robotizace

^a Uvedená terminologie (překlad anglické definice accuracy = trueness + precision) vychází z normy ČSN ISO 3534-1)

Tabulka II

Požadavky na hodnoty výtěžnosti analytických metod využívaných při stanovení reziduí pesticidů (*c* – koncentrační hladiny analytů, *RSD* – opakovatelnost jako relativní směrodatná odchylka)

С	RSD	Výtěžn	Výtěžnost [%]		
[µg.kg ⁻¹] [%]	metody pro jeden či skupinu příbuzných analytů	multireziduální metody			
≤1 1–10 >10	35 30 <20	50–120 70–110 80–110	40–120 50–120 60–110		

3.1. Matriční efekty v GC

Extrakty komplexních matric, jako jsou potraviny a různé biotické vzorky rostlinného či živočišného původu, běžně obsahují vedle cílových analytů i řadu těkavých a netěkavých komponent (lipidy a doprovodné látky, přirozené pigmenty, pryskyřice apod.), z nichž některé není možné pomocí běžně používaných čisticích kroků zcela odstranit. Dlouhodobé vnášení, resp. opakovaný nástřik těchto koextraktů do chromatografického systému pak postupně vede ke zhoršování procesu separace, identifikace i kvantifikace analytů. Negativní vliv na kvalitu výsledků se projevuje mimo jiné poklesem jejich přesnosti, zvyšováním hodnot detekčních limitů. Vrůstá i riziko falešně negativních i falešně pozitivních nálezů.

3.1.1. Matriční efekty v GC injektoru

Závažným problémem při kvantifikaci některých kontaminantů (především těch, které obsahují ve své molekule polární skupiny), je jejich potenciální termodegradace, případně adsorpce, ke kterým může docházet v nástřikovém prostoru "horkých" (izotermních) vypařovacích injektorů. Tato rizika jsou zvláště významná v případě nástřiku bez dělení toku nosného plynu (tzv. "splitless"), který může trvat i desítky sekund. K uvedeným jevům dochází zejména na aktivních centrech reprezentovaných silanolovými skupinami, příp. stopami těžkých kovů, jež jsou téměř vždy přítomny ve stěnách skleněné nástřikové vložky (lineru).

Obr. 1. **Matriční efekt při stanovení nitro-PAU technikou GC-MS--ECNI**, m/z 173; MS – matriční standard, S – standard v čistém rozpouštědle (nástřik 1 pg analytu – nitronaftalenu, nNap)

Při analýze reálných vzorků, tj. extraktů obsahujících vedle analytů též složky výchozí matrice, mohou tyto komponenty interagovat se zmíněnými aktivními centry a v závislosti na vzájemných koncentračních poměrech je částečně či zcela zamaskovat. Výsledkem je pak ochrana citlivých analytů před degradací či adsorpcí po dobu jejich setrvání v prostoru injektoru⁸. Oproti nástřiku analytu (standardu) v čistém rozpouštědle tak v přítomnosti matrice dochází ke vnesení většího množství daného analytu na chromatografickou kolonu, což se pochopitelně projeví vyšším signálem detektoru (v angličtině se tento typ matričních efektů označuje jako matrix-induced response enhancement).

Chromatografický záznam získaný v rámci vývoje metody pro stanovení nitro-derivátů polycyklických aromatických uhlovodíků (PAU) uvedený na obrázku 1 názorně ilustruje popsaný jev (při stanovení mateřských PAU se s tímto typem matričních efektů nesetkáme, neboť interakce těchto nepolárních molekul s aktivními centry není významná)9. Z praktického hlediska tak při kvantifikaci založené na externí kalibraci standardem v čistém rozpouštědle může dojít k často velmi významnému nadhodnocení výsledků (zdánlivé hodnoty výtěžnosti, zejména v případě velmi nízkých hladin analytů někdy dosahují i 1000 %). Názorně jsou jevy, ke kterým dochází v injektorové vložce, zobrazeny na obrázku 2. Obecně je velikost matričních efektů tohoto typu koncentračně závislá a v případě relativně vysokých koncentrací analytu se nadhodnocení nálezů analytů zřetelně neprojeví. V reálných podmínkách však počet aktivních míst není konstantní. V průběhu analýz může docházet k jejich nárůstu v důsledku tepelného namáhání nástřikové vložky, resp. depozitů zde přítomných,

standard analytu

v čistém rozpouštědle

"matriční standard":

extrakt nekontaminované

Obr. 2. Ilustrace podstaty injektorových matričních efektů při GC analýze využívající nástřikové techniky "splitless"; A – počet molekul analytu v nastříknutém vzorku, X, Y – počet "volných" aktivních center v nástřikovém prostoru pro sorpci analytu, \bullet molekuly analytu nastříknuté do injektoru a podíl vnesený na kolonu; O molekuly analytu sorbované na stěně nástřikové vložky, $\mathbf{\nabla}$ molekuly matrice natříknuté do injektoru a podíl vnesený na kolonu, ∇ molekuly matrice adsorbované na stěně nástřikové vložky, (A–X) < (A–Y)

současně však může probíhat i jejich deaktivace. Hodnota matričních efektů je tedy v čase proměnná, v rámci validace metody je nezbytné příslušné trendy dlouhodobě sledovat.

V uvedeném kontextu se jistě jako velmi aktuální jeví otázka možnosti kompenzace, případně eliminace matričních efektů. Teoreticky se zdá být nejjednodušší možností použití inertních materiálů, jejichž povrchy jsou prosté aktivních center, nicméně žádné z běžně dostupných komponent tento požadavek zcela nesplňují. Pro reálné podmínky se sice nabízí několik řešení, žádné z nich však není zcela ideální a vyhovující potřebám multireziduálních metod. Atraktivní, i když ekonomicky značně náročnou variantou, je bezesporu využití izotopy značených analogů; tyto však nejsou pro řadu kontaminantů (např. moderní pesticidy) k dispozici. Z hlediska dosažení správných výsledků je korektnějším řešením kalibrace pomocí matričních standardů. Jejich příprava, zejména při požadavku na vyšetřování širokého spektra kombinací matrice-analyt, představuje značnou časovou i kapacitní zátěž; navíc ne vždy je k dispozici matrice prostá stop cílových analytů.

3.1.2. Optimalizace nástřikové techniky v GC

Jak vyplynulo z předchozích úvah, děje probíhající v průběhu "splitless" nástřikové periody mohou zásadním způsobem ovlivnit přesnost výsledků i hodnoty dosažitelných detekčních limitů. Z uvedených důvodů jsme sérii studií zaměřili na získání podkladů pro kritické zhodnocení aplikačního potenciálu různých typů nástřikových technik v oblasti reziduální analýzy pesticidů. Jedním z cílů bylo posoudit možnost realizace kalibrace pouze pomocí standardů v čistém rozpouštědle, a odstranit tak (náročnou) přípravu matričních standardů.

V prvé sadě experimentů jsme dosáhli částečné, někdy až úplné eliminace matričních efektů pomocí elektronicky řízeného tlakového pulzu aplikovaného v průběhu nástřikové periody¹⁰. S přihlédnutím k charakteru vzorku i typu instrumentu, resp. geometrii injektoru, je nutné nalézt jak horní hranici tlaku v nástřikovém prostoru, tak i délku jeho trvání tak, aby nedocházelo ke ztrátě těkavějších analytů. Zvýraznění kompenzačního efektu pulzního nástřiku lze docílit zvýšením objemu nastřikovaného vzorku (za běžných podmínek až na cca 5 µl); v takovém případě je však nutné zabránit deformaci píků a posunu jejich retenčních časů předřazením kratší deaktivované kapiláry před vlastní analytickou kolonu (tzv. retention gap).

V navazujících experimentech jsme využili injektor s programovatelnou teplotou vypařování (programmable temperature vaporizer, PTV), který obecně umožňuje podstatně šetrnější nástřik labilních analytů či analytů náchylných k sorpci na aktivních místech nástřikové vložky. Vzorek je totiž zaveden do injektoru udržovaného v blízkosti nebo pod bodem varu příslušného rozpouštědla. Po odstranění par rozpouštědla je zajištěn transfer analytů na separační kolonu bleskovým vyhřátím injektorového prostoru. Na koloně udržované při vhodné nízké teplotě dojde k refokusaci zóny analytů. Pro analýzy extraktů s obsahem reziduí pesticidů byla optimalizována¹¹ nástřiková technika "solvent-vent", umožňující postupný nástřik až 30 µl vzorku. Díky této skutečnosti, tj. možnosti zavedení velkého objemu vzorku do injektorového prostoru, není nutné zahušťování vzorku před GC analýzou, přičemž vypuštění odpařovacího kroku má za následek zkrácení přípravné fáze při současné eliminaci rizika ztrát těkavých analytů. Při porovnání s ostatními technikami, nástřik pomocí PTV v největší míře kompenzoval matriční efekty a zároveň poskytoval nejlepší ochranu vstupní části separační kolony před depozicí netěkavých matričních komponent¹². Pomocí PTV jsme při zachování požadované kvality dat realizovali více než 135 nástřiků matričních vzorků, zatímco při pulzním "splitless" nástřiku polovičního ekvivalentu původní matrice nebylo možné již po cca 85 analýzách některé polární analyty kvantifikovat.

3.2. Rychlá GC

Rychlá plynová chromatografie, které jsme v rámci našich studií věnovali řadu experimentů, reprezentuje bezesporu jeden z progresivních trendů v oblasti reziduální analýzy. Pojem rychlá chromatografie je ovšem poněkud obtížné exaktně vymezit, nicméně obecně lze takto klasifikovat separace složitých směsí realizované během několika minut (šířky píku v polovičce výšky se pak pohybují v rozmezí několika sekund), popsány byly i analýzy, jejichž délka se pohybovala na úrovni sekund (tzv. ultrarychlá chromatografie).

Aktuálnost potřeby zavedení rychlé plynové chromatografie do oblasti analýzy komplexních směsí organických těkavých kontaminantů vyplývá též ze skutečnosti, že klasické separace složek extraktů typicky realizované na kapilárních kolonách o délce 25 až 60 m, s vnitřním průměrem 0,15–0,32, příp. 0,53 mm trvají často desítky minut, nezřídka přesahují i jednu hodinu. Při výběru strategie výrazného zkrácení doby analýzy jsme vycházeli z následujících možností: varianta A. - změněné či netradiční parametry separační kolony i) menší vnitřní průměr (tzv.,,micro bore" kolony), ii) kratší délka, iii) tenčí film stacionární fáze, iv) multikapilární kolony, v) šroubovitě stočené kolony; v úvahu byla vzata též varianta B. – úprava operačních podmínek při separaci, konkrétně i) použití rychlého teplotního programování, ii) práce při konstantní teplotě (izotermní analýza), iii) použití vodíku jako nosného plynu, iv) zvýšení průtoku nosného plynu na hodnoty vyšší než optimální, v) provozování kolony za sníženého tlaku (její výstup je zaveden do "vakua").

Je ovšem nutné připomenout, že volba experimentálních podmínek zahrnuje nevyhnutelně řadu kompromisů. Vedle dosažení výrazného zrychlení stanovení je nutné zohlednit požadavky na dostatečnou kapacitu chromatografické kolony, která, mimo jiné, podmiňuje citlivost i hodnotu detekčního limitu; v neposlední řadě je nutné zachovat dostatečnou separační účinnost. Ta totiž zásadním způsobem podmiňuje nejenom správnost (přesnost i shodnost) výsledků analýz, ale promítá se též v hodnotách dosažitelných mezí detekce (uplatňuje se vliv "chemického" šumu).

Z praktického pohledu ovšem nejsou všechny uvedené varianty plně kompatibilní s požadavky stopové analýzy a v některých případech je nelze realizovat pomocí konvenčních GC systémů. S přihlédnutím k omezenému rozsahu této práce je další diskuse zaměřena jen na nejvýznamnější aspekty.

Ve většině případů je rychlá GC realizována na krátkých kolonách, jejichž délka nepřesahuje 10 m; v případě ultrarychlé separace se dokonce pracuje s kolonami s délkou max. 1 m. Zkrácení délky kolony vede zákonitě k poklesu hodnoty rozlišení a vzniká riziko koelucí analytů. Použití hmotnostně--spektrometrického detektoru (MSD) představuje ve většině případů vhodné, ne však univerzální řešení. Oproti konvenčním, v oblasti analýzy kontaminantů hojně využívaným detektorům (µ-ECD, NPD či FPD) s vysokou rychlostí akvizice dat, se při použití MSD s kvadrupolovým analyzátorem či iontovou pastí může stát limitujícím faktorem dosažitelná skanovací rychlost (tato se u uvedených běžných typů MSD pohybuje v rozmezí 10-20 spekter.s⁻¹) Potenciál techniky selektivní akvizice spektrálních dat, tzv. monitorizace vybraných iontových druhů (selected ion monitoring, SIM), umožňující u kvadrupolových MSD významné snížení detekčních limitů, nelze za podmínek rychlé chromatografie plně využít.

Dosud v praxi nejčastěji používaná varianta rychlé plynové chromatografie realizovaná pomocí kolon s malým vnitřním průměrem se v oblasti reziduální analýzy příliš neuplatnila z důvodů limitované dostupnosti vhodné nástřikové techniky. Obecným požadavkem za daných podmínek je pochopitelně rychlé vnesení vzorku na kolony v co nejužší zóně. Aplikace "splitless" nástřiku – ve stopové analýze jedné z nejběžnějších technik, založené na refokusaci analytů ve vstupní části GC kolony, není prakticky proveditelná. Dlouhá kondenzační zóna je příčinou diskriminačních jevů a nepřijatelné deformace píků.

Jako nejzajímavější varianty rychlé plynové chromatografie byly pro naše aplikace posléze vyhodnoceny: *i*) rychlé programování teploty a *ii*) separace za sníženého tlaku; v obou případech byly analýzy provozované na relativně krátkých kolonách.

Obrázek 3 ilustruje pracovní charakteristiky čtyřminutové GC analýzy extraktu pšenice kontaminovaného rezidui organofosforových insekticidů (detekce pomocí plameno-fotometrického detektoru, FPD)¹³. K rychlému ohřevu (v některých úsecích dosahovala rychlost teplotního gradientu až 360 °C.min⁻¹) separační kolony dlouhé 5 m byl využit odporový ohřev (elektronicky řízený odporový ohřev vodivého materiálu obklopujícího povrch kolony byl realizován pomocí externě připojeného systému "EZ flash" – Thermedics Detection, USA, umístěného mimo vlastní plynový chromatograf HP 6890).

Při srovnání s konvenční analýzou realizovanou na kapiláře dlouhé 60 m (ostatní parametry použitých kolon, tj. vnitřní průměr a stacionární fáze, byly prakticky identické) trvající více než 40 min, je zřejmý dramatický rozdíl v hodnotách detekčních limitů. Za podmínek rychlé plynové chromatografie je totiž díky podstatně užším píkům analytů poměr signálu k šumu mnohonásobně vyšší. Porovnání výsledků získaných při rychlém programování teploty kolony pomocí odporového ohřevu s využitím modulu EZ flash a konvenčně, tj. v termostatu plynového chromatografu (přístroj HP 6890 Plus) dokumentovalo jednoznačně lepší opakovatelnosti retenčních časů

Obr. 3. Porovnání analýz identického extraktu organofosforových pesticidů pomocí konvenční (a) a rychlé (b) plynové chromatografie s odporovým ohřevem "EZ flash" (detekce pomocí FPD); R – odezva detektoru, 1 – dichlorvos, 2 – mevinphos, 3 – omethoat, 4 – dimethoat, 5 – diazinon, 6 – chlorpyrifos, 7 – parathion-Me, 8 – pirimiphos-Me, 9 – malathion, 10 – chloropyrifos-Et, 11 – parathion-Et, 12 – methidation, 13 – ethion, 14 – phosmet, 15 – phosalone, 16 – koeluce 1, 17 – koeluce 2

při aplikaci první z uvedených technik (tato skutečnost je zvláště významná v případě, kdy retenční čas analytů je využíván k jejich identifikaci). Rozdíl byl zřetelný zejména pro analyty s vyššími hodnotami retenčních časů; při rychlosti konvenčního ohřevu 80 °C.min⁻¹ dosahovaly hodnoty relativní směrodatné odchylky již desítek %. Zmínit se je třeba ještě o další přednosti odporového ohřevu, kterou je vysoká rychlost re-ekvilibrace chromatografického systému (zchlazení na výchozí teplotu). Tato skutečnost dále zvyšuje laboratorní kapacitu.

Analýza směsi moderních pesticidů v reálných matricích v případě druhé, velmi zajímavé varianty rychlé plynové chromatografie, byla realizována¹⁴ na 10 m dlouhé koloně s relativně velkým vnitřním průměrem (0,53 mm, tzv. mega--bore) připojené k "splitless" injektoru krátkou restrikční kapilárou (3 m, vnitřní průměr 0,25 mm) s dezaktivovaným povrchem, výstup kolony byl připojen k iontovému zdroji MS detektoru, čili separace analytů probíhala za nízkého tlaku, resp. za "vakua". Zvýšení difuzivity analytů v plynné fázi umožňuje dosažení podstatně vyšší optimální lineární rychlosti nosného plynu (v souladu s van Deemterovym vztahem) a potažmo výrazné zrychlení separace těkavých komponent vzorku oproti chromatografické separaci, při které je na výstupu kolony atmosférický tlak. Popsaný systém (tzv. low-pressure, LP-GC-MS) má díky parametrům použité kolony vysokou kapacitu a je zároveň kompatibilní s nástřikovými technikami využívanými běžně v reziduální analýze. Zmíněný pokles dosažitelného chromatografického rozlišení ve většině případů kompenzuje selektivita MSD..V našich experimentech jsme dosáhli snížení doby analýzy na třetinu (cca15 min) při současném snížení detekčních limitů, které umožnil vyšší nástřik vzorku. Rozsah matričních efektů byl v souvislosti s touto skutečností významně omezen (viz odst. 3.1.1.).

3.3. Spojení GC-MS

Ještě v devadesátých letech minulého století se hmotnostně-spektrometrické detektory používaly jako primární prostředek pro kvantifikaci analytů ve stopové analýze jen ojediněle, ve většině aplikací spíše sloužily ke konfirmaci nálezů kontaminantů. Cenová dostupnost hmotnostních detektorů s nízkým rozlišením postupně umožnila jejich rutinní využití v různých oblastech reziduální analýzy. Nejčastěji jsou hmotnostní analyzátory reprezentovány přímým kvadrupolem, iontovou pastí, v posledních letech se zvyšuje počet aplikací využívajících analyzátory typu "time of flight" (TOF). Každý z nich samozřejmě disponuje určitými přednostmi; rozdíly jsou především v opakovatelnosti měření za přítomnosti složek matrice, v přesnosti určení hodnot m/z a rychlosti snímání spekter. Iontová past navíc umožňuje provádění vícenásobné spektrometrie (přímý kvadrupol a TOF pouze při zřetězení více stupňů). Zmínit se je třeba i o možnosti optimalizace pracovních charakteristik analytické metody pomocí volby vhodné ionizační techniky. Vedle běžné ionizace nárazem elektronů (electron impact, EI) je v ultrastopové analýze kontaminantů za určitých okolností výhodné použití měkké ioni-

Obr. 4. Záznamy při GC-TOF-MS analýze extraktu jablek kontaminovaných tolylfluanidem (0,07 mg.kg⁻¹); a – celkový iontový tok (TIC), b – *m*/z 137, šířka okna 0,5 Da, c – *m*/z 137,032, šířka okna 0,01 Da, d – spektrum píku <u>T</u> – vzorek, e – spektrum tolylfluanidu – knihovna NIST # 62557

zační techniky využívající reakčního plynu (nejčastěji methanu), která nevede k rozsáhlejší fragmentaci mateřské molekuly. Detekce intenzivního pseudomolekulárního iontu MH⁺ je vesměs specifičtější než nižších fragmentů a u některých látek může, díky nízkým hodnotám šumu v oblasti vyšších hodnot m/z, klesnout hodnota detekčního limitu. V případě stanovení analytů s elektronegativními substituenty či skupinami je možné pracovat v módu tzv. negativní chemické ionizace (negative chemical ionisation, NCI), správně negativní ionizace se záchytem elektronů (ECNI). Mechanismus detekce je podobný jako u ECD, primárně vzniká molekulový ion Mzáchytem nízkoenergetických elektronů. Zvýšení poměru signálu k šumu až o dva řády oproti ionizaci EI s akvizicí dat v módu monitorizace vybraných iontových druhů (selected ion monitoring, SIM) používané v případě kvadrupolových analyzátorů umožňují spolu s dobrou selektivitou detekce spolehlivou kvantifikaci některých skupin kontaminantů na hladinách nižších než 0,1 μ g.kg⁻¹. Na autorském pracovišti je GC-ECNI využívána zejména pro stanovení polybromovaných difenyletherů (PBDE) a dalších bromovaných retardantů hoření, nitroderivátů PAU (cit.9) a pro stanovení toxických planárních (non-ortho) PCB. V posledním zmíněném případě se tato technika osvědčila, resp. poskytla přesné výsledky při certifikaci nového matričního referenčního materiálu CRM 719, na jehož přípravě se v rámci projektu EU pracoviště podílelo.

V rozsáhlé studii zaměřené na posouzení přesnosti výsledků analýz reziduí moderních pesticidů v extraktech z rostlinných matric získaných v různých GC systémech jsme při analýze série 14 identických vzorků pomocí GC-MS s kvadrupolovým analyzátorem HP 5973 (HP, USA) provozovaným v módu monitorizace vybraných iontových druhů prokázali vesměs nižší hodnoty relativních hodnot směrodatných odchylek (max. 5 %) nálezů než při detekci konvenčními detektory NPD, ECD. Na straně druhé, opakovatelnost retenčních časů byla u MSD nižší. Tento jev se stal zvláště zřetelným při rychlém programování teploty separační kolony. Za těchto podmínek se výrazně zhoršila i opakovatelnost výsledků¹⁶.

Pro analýzy některých kontaminantů začal být v minulém roce využíván též GC-MS systém vybavený iontovou pastí Polaris Q (Finnigan, USA). Předběžné poznatky s využitím alternativních měřících módů lze shrnout následovně: i) pro rychlý "screening", především neznámých vzorků, se jeví vhodné použít mód "Segment scan", který ve snímaném rozsahu poskytuje plnou spektrální informaci, obdobně jako "Full scan"; ii) celkové odezvy analytů a poměr signálu k šumu jsou u "Segment scanu" vyšší než u "Full scanu"; iii) velkou výhodou "Segment scanu" je nenáročná příprava metody, tj. není nutné vybírat ionty a stanovovat časová okna jako v módu SIM, který má sice poměrně vysoké hodnoty poměru signálu k šumu (a tím nízký limit detekce), ale neposkytuje spektrální informaci; *iv*) při analýze vzorků obsahujících známé analyty v nízkých koncentracích je z hlediska dosažení nižšího limitu detekce vhodné použít mód MSⁿ (nejčastěji MS²).

První zkušenosti v současné době získáváme s instrumentací GC-TOF-MS Micromass GCT (Micromass, UK). Tento konkrétní typ instrumentu umožňuje měření hmotnosti iontů s přesností na 4 desetinná místa. Na rozdíl od kvadrupolových analyzátorů poskytuje TOF plnou spektrální informaci i na velmi nízkých koncentračních hladinách. Předběžné experimenty byly realizovány za podmínek mírně zrychlené analýzy (asi 3× kratší doba analýzy, než je nutná pro dokonalou separaci všech analytů). Obrázek 4 dokumentuje vyšetření extraktu vzorku jablek na obsah reziduí pesticidů. Při použití charakteristické hmotnosti iontu zvolené s přesností 0,01 Da byl nalezen pík tolylfluanidu na relativně nízké koncentrační hladině. Podle naměřeného MS spektra byl tento pík po srovnání s knihovnou NIST automaticky identifikován. Plánovány jsou experimenty využívající TOF-MS ve spojení rychlou LP-GC (viz 3.2.).

4. Vysokoúčinná kapalinová chromatografie (HPLC)

Vysokoúčinná kapalinová chromatografie (HPLC) představuje po GC druhou nejvýznamnější separační techniku využívanou v oblasti identifikace a kvantifikace organických kontaminantů. Při analýze širšího spektra analytů v komplexních matricích se však limitujícím faktorem může stát nedostatečná selektivita běžně používaného UV detektoru (řešení nepřináší ani detektor s diodovým polem, DAD). Z uvedeného důvodu jsou kladeny značné nároky na účinnost přečištění vzorků (v případě multireziduálních metod však bohužel nelze využít potenciálu, resp. specifity imunochemických a příbuzných prekoncentračních technik). Vícestupňová purifikace primárního extraktu však může vést vedle prodloužení doby přípravy vzorku ke snížení hodnot výtěžnosti některých analytů. Nízké hodnoty detekčních limitů i podstatně lepší selektivity fluorescenčního detektoru (FLD) lze využít jen u omezeného spektra kontaminantů; příkladem všeobecně rozšířené, rutinní aplikace HPLC-FLD v této oblasti je snad jen stanovení PAU.

4.1. Spojení LC-MS

Systémy HPLC s hmotnostně-selektivním detektorem, které se dnes stávají nepostradatelnou součástí vybavení specializovaných laboratoří, zásadně rozšířily možnosti sledování polárních a termolabilních kontaminantů a jejich metabolitů i v komplexních matricích. Tato technika v zásadě umožňuje zjednodušení přípravy vzorku (viz dále), nicméně i zde je nutné zohlednit možné matriční efekty.

V praxi se nejčastěji ionizace analytů provádí za atmosférického tlaku (atmospheric pressure ionisation, API); výhodou tohoto rozhraní je účinné odstraňování mobilní fáze, celková robustnost a snadnost údržby. Oba používané módy API *i*) elektrosprej (ESI) a *ii*) chemická ionizace (APCI) splňují požadavky na účinnou a opakovatelnou ionizaci širokého spektra látek.

Praktická aplikace systému LC-API-MS s analyzátorem typu iontová past (Finnigan LCQ Deca) nám poskytla možnost rychlého zavádění nových metod pro nové cílové analyty, tedy značnou operativnost a flexibilitu při řešení konkrétních naléhavých problémů. Dalšími výhodami tohoto systému jsou: *i*) dosažitelnost velmi nízkých detekčních limitů (pro některé analyty v módu MS² i < 0,1 µg.kg⁻¹ – v závislosti na zakoncentrování vzorku); *ii*) spolehlivost při konfirmaci nálezů; *iii*) významná redukce doby třeba pro přípravu vzorků, která je dána schopností této techniky měřit za přítomnosti poměrně velkého množství matrice (díky vysoké selektivitě detekce
není separace analytů ve většině případů kritická). Zmínit se je ovšem třeba i o některých skutečnostech limitujících aplikace v oblasti kvantitativní stopové analýzy: *i*) větší rozptyl výsledků pro některé kombinace analyt-matrice; *ii*) často neuspokojivá linearita kalibrační závislosti i v relativně malém koncentračním rozsahu a *iii*) složitá detekce analytů, pro které není k dispozici standard (predikce iontů v módu MS² je obtížná).

4.1.1. Matriční efekty v LC-MS²

Jak již bylo naznačeno, ve stopové analýze se nejčastěji využívá detekce v tzv. MS² módu, při níž je snímán charakteristický dceřiný ion vzniklý z primárního (většinou molekulového) iontu daného analytu. Výsledkem je značné zlepšení poměru signálu k šumu (10-100 násobné) oproti měření realizovanému v režimu plných spekter ("Full ms"). Při aplikaci této vysoce specifické detekce jsou přítomné matriční koextrakty v chromatogramu prakticky "neviditelné", a proto není jejich přítomnost kritická z hlediska možných pozaďových interferencí, jako je tomu u méně selektivních detektorů (např. UV). Na druhé straně však složky matrice mohou ovlivňovat odezvu analytů díky participaci v jednom nebo více z následujících procesů probíhajících v LC-MS rozhraní: i) vznik kapiček aerosolu; ii) desolvatace molekul analytu; iii) odpařování rozpouštědla; iv) ionizace analytů. Výsledkem těchto jevů je, že při stejné koncentraci analytu je jeho odezva v reálném vzorku odlišná od odezvy standardu v čistém rozpouštědle. Přestože zde existuje zdánlivá analogie s výše popsanými matričními efekty v GC (viz 3.1.1.), tyto jevy mají v LC-MS poněkud odlišný, mimořádně komplexní charakter. Zatímco u GC se matriční efekty ovlivňující přesnost výsledků odehrávají v nástřikovém prostoru, a tedy před vlastní separací komponent vzorku, v případě LC-MS k matričním efektům dochází na LC-MS rozhraní, tj. až po separaci. Tato skutečnost komplikuje možnost zobecnění poznatků týkajících se matričních efektů, neboť rozdílné, resp. změněné podmínky HPLC separace mohou vést ke změně množství nebo typu matričních složek koeluujících se s daným analytem. Dalším významným rozdílem proti plynové chromatografii je, že zatímco při GC matrice přítomná ve vzorku většinou způsobuje zvýšení odezev, v LC-MS dochází často k výraznému snížení signálu analytu, což může mít kritický dopad na detektabilitu analytů.

V rámci modelové studie vlivu různých faktorů na rozsah matričních efektů v LC-MS² jsme věnovali pozornost analýze reziduí vybraných relativně polárních pesticidů. Mimo jiné byly porovnány obě dostupné techniky ionizace, APCI a ESI. Přestože je často zmiňována lepší tolerance techniky APCI vůči matričním komponentám, v případě extraktu jablek cíleně kontaminovaného pesticidy nebyl v našich experimentech mezi oběma ionizačními technikami zjištěn významný rozdíl v matričních efektech. Tyto se nepodařilo eliminovat ani přečištěním primárních extraktů pomocí gelové permeační chromatografie, jinak běžně používané v multireziduálních metodách využívajících pro stanovení reziduí pesticidů GC. Přestože je vzorek při tomto čisticím kroku zbaven vysokomolekulárních koextraktů, tyto zřejmě nejsou identické s matričními komponentami zodpovědnými za matriční efekty.

V případě, že matriční efekt nelze zcela eliminovat změnou podmínek separace HPLC či přečištěním vzorku, je použití kalibrace pomocí vnějších rozpouštědlových standardů nevhodné, neboť existuje riziko nesprávné kvantifikace cílových analytů (na rozdíl od GC může hrozit jak nadhodnocení, tak podhodnocení výsledku).

V rámci jedné z našich studií¹⁵ jsme se zaměřili na porovnání správnosti výsledků dosažených pomocí tří různých kalibračních technik: i) použitím vnějších rozpouštědlových standardů (spolehlivý přístup, avšak časově náročný, je nutné mít k dispozici vhodný materiál neobsahující rezidua standardů), ii) použitím vnějších matričních standardů a iii) technikou "echo-píku" (standard obsahující analyt(y) je nastříknut s krátkým časovým posunem). Vzorky jablek byly cíleně kontaminovány pesticidy na dvou různých známých koncentračních hladinách 0,01 µg.ml⁻¹ a 0,1 µg.ml⁻¹. Takto připravené vzorky byly posléze analyzovány stejně, jako kdyby se jednalo o neznámé vzorky, a z kalibrační závislosti byla vypočtena jejich koncentrace a poté porovnána se správnou hodnotou. Použití standardů v čistém rozpouštědle pro kalibraci se ukázalo být zcela nevhodné u analytů, které vykazují matriční efekt. Zatímco v literatuře se často diskutuje pouze potlačení odezev analytů vlivem matrice, z našich experimentů vyplývá, že matriční efekt může být i vyšší než 100 %; docházelo tudíž k nadhodnocení výsledku (carbendazim, thiabendazol). Matriční kalibrace je na druhé straně poměrně spolehlivý způsob dosažení kvalitních výsledků. Technikou vnitřního strandardu ("echo pík") bylo pro 6 z 8 pesticidů dosaženo správných výsledků, přičemž tato metoda navíc umožňuje odbourání pracné přípravy matričních standardů. Studie v této oblasti pokračují.

V této práci jsem shrnula zkušenosti a uvedla některé zajímavé výsledky kolektivu laboratoře Ústavu chemie a analýzy potravin VŠCHT zabývající se problematikou environmentálních kontaminantů a chemickou bezpečností potravin. Jmenovitě chci poděkovat svým kolegům a doktorandům (v některých případech již bývalým) – S. Duškovi, M. Godulovi, K. Holadové, V. Kocourkovi, K. Alterové-Maštovské, J. Poustkovi a J. Křivánkové-Zrostlíkové za optimismus, se kterým se vrhali do nástrah stopové analýzy.

LITERATURA

- Hajšlová J., Kocourek V., Poustka J., Cuhra P.: Chem. Listy 92, 777 (1998).
- Hajšlová J., v knize: Environmental Contaminants in Food (Moffat C. F., Whittle K. J., ed.), kap. 7. Sheffield Acad. Press, Sheffield – Boca Raton 1999.
- Kvalimetrie 7: Validace analytických metod. EURACHEM--ČR, Praha 1998.
- 4. Council Directive 97/57/EC, Off. J. European Com. *L265*, 87 (1997).
- Horwitz W., Kamps L. R., Boyer K. W.: J. Assoc. Off. Anal. Chem. 63, 1344 (1980).
- FAO/IAEA in collaboration with AOAC/IUPAC/EU-RACHEM: Practical Approach to Validation Methods for Analyses of Residues of Pesticides in Food. FAO/ IAEA, Vienna 1999.
- 7. Lehotay S., Hajšlová J.: Trends Anal. Chem., v tisku.
- 8. Hajšlová J., Holadová K., Kocourek V., Poustka J., Go-

Referáty

dula M., Cuhra P., Kempný M.: J. Chromatogr., A 800, 283 (1998).

- 9. Dušek B., Hajšlová J., Kocourek V.: zasláno do tisku.
- Godula M., Hajšlová J., Alterová K.: J. High Resol. Chromatogr. 22, 395 (1999).
- 11. Godula M., Hajšlová J., Maštovská K., Křivánková J.: J. Sep. Sci. 24, 355 (2001).
- 12. Zrostlíková J., Hajšlová J., Godula M., Maštovská K.: J. Chromatogr., A *937*, 73 (2001).
- Maštovská K., Hajšlová J., Godula M., Křivánková J., Kocourek V.: J. Chromatogr., A 907, 235 (2001).
- Maštovská K., Lehotay S. J., Hajšlová J.: J. Chromatogr., A 926, 291 (2001)
- 15. Zrostlíková J., Hajšlová J., Poustka J.: zasláno do tisku.
- 16. Maštovská K.: Dizertační práce. VŠCHT, Praha 2001.

J. Hajšlová (Department of Food Chemistry and Analysis, Institute of Chemical Technology, Prague): Trace Analysis of Organic Contaminants – Examples of Application of Advanced Instrumental Techniques for Examination of Foodstuffs and Biotics

Multiresidue methods employing various chromatographic techniques are currently used for determination of a wide range of semivolatile organic contaminants that may occur in food or environmental biotic matrices. Conceivable strategies aimed at improvement of performance characteristics of such methods are presented in this paper. Examples demonstrating applicability of advanced instrumental approaches such as fast GC and GC or LC coupled with mass spectrometry are provided. The quality of generated data is discussed.